어떻게 한 점과 법선벡터로 평면이 정의될까?+벡터는 왜 필요할까? & 치환적분과 부분적분은 어떻게 할까?
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
그러므로, 질문의 중요성은 강조해도 지나치지 않습니다.
교과서에도 계속해서 질문을 여러분께 건네주곤 합니다. 한번 예를 들어볼까요?
(출처 : 미X엔 미적분 2 교과서 본문)
이런 식으로 교과서의 본문에서도 질문을 건네주고 시작합니다.
그렇다면, 여러분이 위 질문으로 당연히 생각해야하는 것은 이런것입니다.
왜 삼각함수의 값의 부호가 그렇게 될까?
왜 삼각함수의 합을 하나의 삼각함수로 나타내야할까?
시간이 된다면 그 역사를 공부하는 것도 좋지만, 그게 아니더라도 어디에 쓰이는지는 정리해주셔야합니다.
이렇게 생각하면서 공부하는 방식이 여러분의 공부에 필요합니다.
그래야 여러분이 더 확실한 개념을 가지게 됩니다. 모르는 것을 채워나가게 됩니다.
그것이 제가 질문칼럼을 올리고 있는 이유입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
https://orbi.kr/00012254198
저번 칼럼은 이거였습니다!
변곡점은 어떤 점일까? & 어떻게 한 점과 법선벡터로 평면이 정의될까? & 벡터는 왜 필요할까? https://orbi.kr/00012680627
갑니다.
바쁘신분은 8분 52초부터 보세여.
요약하자면 다음과 같습니다.
방향벡터는 기울기와 같습니다.
하지만 우리는 u벡터=(a,b)와 기울기 m=b/a가 같음을 알지만
u벡터가 (a,b,c)만 되어도 기울기로 표현하기 힘든 것을 압니다.
기울기는 결국 y의 변화량을 x의 변화량으로 나눈것입니다.
3차원에서는 그 변화량을 알고싶지만, 분수로 표현하기에는 너무나 많은 것입니다.
그래서 벡터로 표시했으며, 이 방향벡터는 성분 하나로 표시된 위치벡터이기에 각을 구하기도 쉽습니다.
원점 O를 시점으로 하므로, 원점을 중심으로 회전한 정도를 구하면 되니까요!
또한, 평면의 결정조건과 연결지어서 평면의 방정식을 구해보았습니다.
그리고, 제발 공간도형 파트의 평면의 결정조건, 도형사이의 위치관계에 대한 공부는 하시길바랍니다.
다음 칼럼 주제 갑니다.
질문은 이렇게나 중요합니다.
우리가 모르는 것이 질문으로 나오기 마련입니다.
반드시, 질문을 해결하시면서 공부하시길 바랍니다. 지금 하고있는 공부에 질문만 추가하셔도 좋습니다.
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
답은 다음 칼럼에 달겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내신 3-4등급대도 간간히 스카이 가는 학교이고 3점 후반대예요 사회계열로 생기부는...
-
ㅋㅋㅋㅋㅋ
-
수학 때문에 노장학 재종 다니게 생겼구나 하하하하ㅏㅏ
-
운전병 기준 89점,05년생 1종보통 한능검 1급 토익 520~730 다자녀(1명)...
-
19세기에 정변(갑신정변)을 일으켜서 무려 3일 동안이나 유지하신 김옥균 예전엔...
-
그래서 통합과학 문제좀 만들고있는데 여기 그냥 올리면 퍼갈사람 있을라나 팔긴싫고...
-
뭔가를 규칙적으로 하니까 사람 사는 기분이 남
-
ㅈㄱㄴ 덕코드림뇨
-
동아시아사에요??
-
경제사문에서 경제>생윤 바꿀까 고민 중입니다 국어 공부는 딱히 안 해도 될 것 같고...
-
제대로 된 수학을 공부하는 법, 학생들이 학습에서 놓치는 부분들에 대해...
-
-3.x 면 안심할만 한가요… 보통 몇까지가 정배라고 보시는지 궁금합니다
-
수험생활 꿀팁 4
노는 시간 정하기. 그것도 넉넉하게. 안 그러면 딴 짓하거나 금방 공부랑 권태기 올 수 있음.
-
3 이하면 위험하다는데 진짜임뇨?
-
의사들이 인턴생활하면서 배우는것 “능력이 없으면 나대지마라” 0
환자 치료할 능력도 안되면서 환자부터 받아버리면 본인도 괴롭고 환자도 괴롭다...
-
디카페인으로 주문한거 분명 네다섯모금 마셨는데 ,, 심장이 갑자기 마라톤뛰기작함 크악
-
사문 인강추천 0
이지영 임정환 윤성훈쌤중이 누가 제일 괜찮나요 패스는 다 보유중이고 이지영쌤...
-
오늘 옮밍아웃 0
당하지 않으려면 통금 지켜서 집 가야겠다
-
개간지임
-
인생 시작은 성공적인거맞죠? 망한건 아니죠? 라고 물으면 욕처먹을거같고
-
화공이 나으려나 전자쪽이 나으려나..
-
사탐런을 한다면 하고 싶은 과목이 저 두개밖에 없음 역사덕후라...
-
전방을 지키고있는 사나이입니다. (그렇다보니 생각할 시간도 많고 저를 많이...
-
어제 코엑스 갔었는데 저거 보고 순간 눈물남......
-
근황) 6
네 이러고 지냈습니다
-
여자애들이 나보고 피하더라 근데 더 심각한건 남자애들도 구석으로 자리 안내하더라...
-
지금 변표 발표안했으면 진학사에선 전년도 변표로 점수 계산하나요
-
컴공 기준으로 어디가 더 좋을 것 같나요?? + 계속 찾아보고 있긴 한데 취업이나...
-
반수칠까 2
나도 의반이되어서 화1표본을 작살내고싶다
-
수능계 최고 저능아는 물1 고였다고 물2오는 유형이다 그냥 물리는 죄악이다
-
수능 후 오르비 반응보니까 피튀기며 고통스럽게 죽는 거에 가깝던데... 그때 반응은 ㄹㅇ로 무서웠음
-
돈이오ㅓㅂㅅ다 2
ㅠㅠㅠ
-
암기가 좀 논리가 있으면 꽤 하는데 무지성 생암기는 정말 안됩니다. 미생물 이름...
-
굿모닝 10
다들좋은아침이에요
-
오로지 덕코를 모으기 위해서
-
안녕하세요 저는 0
죄송합니다.
-
인천이나 부천 재수학원추천좀.....ㅜㅜ 부천도 괜차ㄶ은데 인천이면 더 좋아요!!
-
진짜 상상이 안가네
-
ㅈㄱㄴ
-
작년 입시 결과 보고 또 보고 성적 분석하고 또 분석하는데 머리만 더 아파지네요...
-
국어 커리 0
1-3월 강기분, 마더텽 3-5월 새기분, 기출 n개년, 수특, 매월승리 5-8월...
-
고려대 기숙사 0
기숙사 신청할때 직영이랑 민영이 있는데 어떤거 선택해야될까요? 둘다 거리순으로...
-
25때 투투한 사람임 솔직히 신규진입은 이제 의미없고 걍 하던거 하는게 나음...
-
1. 표본이 적은 과목은 아웃라이어들 유입이 만표•백분위에 큰 영향을 끼침....
-
양승진t조교 0
해보신분? 면접할때 테스트본다는게 수학문제푸는 테스트인가요? 면접 보통 뭐...
-
일단 학교를 옮겨서 16
내가 문제인건지 학교가 문제인건지 확인해보고싶음 진지하게 이나이처먹고 친구가 없는...
-
어렵네요
-
임뇨
-
플랫폼 어쩌고 부분 진도 나갈때 진학사갖고 써본적 있었는데 나중에 기억해뒀다가 한번...
-
사유:알바
많은 의견과 질문바랍니다. 답변드릴게요.
좋은 글 감사합니다~~
학생들이 미분에서 가장 중요시 생각해야 할점을 종종 물어보곤하는데 저는 그래프개형이라고 말하곤합니다 올바른것일까요..?
저는 기울기를 언급합니당
접선의 기울기. 즉, 접선이 왜 필요한지를 생각합니다.
그리고 증가감소와 극대극소를 이용해서 그래프를 그리고 해석합니다.
이 두가지인 것 같습니다.
미분한다는 것은 ~ 에서 오타 있네요
lim x->0 을 h->0으로 ...!
아 맞습니다. 감사합니다.
흥미로운 칼럼을 써주셔서 감사합니다. 항상 재밌게 읽고 있습니다.
감사합니다
위치+방향or내적
궁금한게 있습니다.
칼럼의 주제와 관계는 없지만, "미분가능한 함수를 미분하면 그도함수의 연속성을 보장할수없다"라는것을 교과개념에서 유추할수있나요? 일단, "적분과 미분과의 관계를 적용가능할 조건이 f가 연속인데, 부정적분관점에서 보면 f는 도함수이고
도함수가 연속인 함수는 미분가능하다"라고는 유추가 가능하지만, 앞에서 언급한 부분은 가능한지 모르겠습니다.
미적분 1의 개념으로 이해하고 유추할 수 있습니다.
도함수가 연속인 함수는 미분가능하다는 말은 맞습니다. 미분가능의 정의는 미분계수정의에서 좌, 우극한이 같아 함수의 극한이 존재할때 성립합니다. 연속이라는 것은 극한과 함숫값이 같다는 것입니다.
이 상황에선 도함수의 극한이 존재한다는 것입니다.
다만, 미분가능하다는 말로 도함수의 연속을 보장할 수는 없습니다.
미분가능하다는 말은 극한값이 존재한다는 말인데, 연속은 극한값과 함숫값이 같을때를 말합니다. 함숫값까지 존재한다고 보장할수는 없습니다.
치환적분은 합성함수 미분법 역연산이라고 볼 수 있고, 부분적분은 곱의 미분법의 역연산이라고 볼수 있고,
피적분함수의 형태가 복잡할 때, 합성함수/ 함수의 곱 꼴을 잘 적용시켜서 적분을 하는 것인가요??