이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까?
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
그렇습니다. 그래서 질문과 답변 칼럼을 올려볼거에요
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
보신분 많이 없으실텐데..ㅋㅋ
오늘은 칼럼 요청이 들어와서 쓰게 되었습니다.
일단 저번주의 답을 첨부합니다.
매우 간단하죠..? ㅋㅋ
이제 오늘의 칼럼 띄워봅니다!
점 (a,b)를 x축으로 m만큼 평행이동하면 (a+m,b)가 되는데
왜 함수 y=f(x)를 x축으로 m만큼 평행이동하면 y=f(x-m)이 될까?
분명 점을 x축으로 평행이동 하면 x값이 늘어나는거 맞겠죠?
하지만 그래프의 x값은 왜 빼지는걸까요?
그래프의 모든 점의 x값이 늘어난것이 맞는데 말이죠.
많은 의견을 덧글로 달아주세요! 제가 생각하는 답은 다음 칼럼에 달겠습니다.
힌트를 드리자면.. 저 그림을 잘 보셔요! x값은 변할겁니다 x축 평행이동이니까요.
물론.. 제 답이 정답은 아니겠지만.. 꽤 설득력 있을거에요!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
다 예쁜거란 말이에요
-
웅
-
ㄹㅇ...
-
총장발가락 빨몀서 아헤가오할게 그리고 오라비에 인증할게
-
오늘부터 11
클린유저해야지
-
학점꼬라박기밖에안되는데
-
진짜 연고공을 갈수잇나
-
경고다
-
허수 마인드긴한데 역대 수분감 중 젤 못생긴 것 가틈
-
나 고1때 우리반에 1등급 4명 몰려있던거 생각나네 시발 ㅋㅋㅋㅋㅋㅋ 잔교에...
-
레어 뺏엇다 2
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
요새 과탐 메타는 뭐임 10
나 현역 때는 화생에서 생지로 넘어가는 과도기였는데
-
차단하고연락을안본다미안해
-
댓츠노노 2
그렇지 않다
-
벨루티 사가시면 3천덕 드림
-
야이 모솔아 5
그 사람이 바로 나에요
-
입시 수학이란건 2
너무 논리대로 풀리는 느낌임 내가 걍 수학을 모대서인지 대학에서 접한 수학은 감각적이어야함
-
4등급 멘토활동 4
3-4등급 하는 과목인데 생기부에 멘토 활동 적히면 조금 그런가요? 저희 반이...
-
과잠에 학교 새길때 검정고시면 ‘black school' 새기나 5
좀간지나는데??
-
국어가 4등급이면 이게 맞지않나
-
결혼하고싶으면말을해
-
학교 수업으로 미적을 배우긴 하는데 그거가지고는 수리논술에 써먹을 정도로 배우진...
-
과중반 2학년 수업시간에 정시공부하면 혼남??? 일반반이엇으면 모르겟는데 과중반이라...
-
ㅇ
-
그것이 상여자니까
-
6시까지 들어오면 맴매해줘
-
오르비 잘자 5
빠이빠이
-
욕먹기 싫으니까 15분 까지만 올비하고 빡공해야징..
-
라유도 못살정도로
-
낮잠 on 1
-
있잖아요 이거 기지개만 펴도 나오는 소린데?
-
대학날먹하고싶다
-
대략 어느정도 되야하나용 점공 돌리셨던분들 몇칸이엿는지 알려ㅠㅅ주세여 ㅜ
-
빵굽습니다 1
-
수능포기하면행복해질까
-
담배 많이 줄였습니다 19
넵
-
까먹었다
-
만들어봤습니다 @_.kiwonmass 많관부
-
레어 팔아요 2
재미앖는 친구랑 눈 팔아요
-
오늘 해야할것 0
능률 보카 데이 하나 생윤 직업 윤리 복습 기시감풀기 동아사 슈인장 무역파트 복습...
-
누가 닉변하고 나랑 의형제맺자
-
군면제이려나 너무 규정이 빡세졌어
-
여친인증할까요 0
ㅈㄱㄴ
-
이지리스닝하긴 걘이 더좋은거같기도 적은몰라도넌못돼내라이벌은
-
똥먹고싶다 8
아
-
아.
-
윗글이 싼거 먹을거임
-
이 말투 귀여움 5
~임뇨 진짜임뇨,,
원래 x값에 m을 더한 값을 대입해서 원함수의 값이 나오는 식이 되어야 하니까 그런가요??
맞습니다!
축의 이동
축의 이동은 어떤 개념인가요?
설명해주시겠어요??
간단히 이야기하자면, 도형은 가만히 있고 도형을 설명해주는 두 기저의 기준점 (축) 을 반대로 움직인다고 생각하는거죠.
사실 이해할 수 있는 얘기긴 한데..
교육과정에서는 축을 이동하는 법을 안배우긴 해요.
그래도 이해하기 좋은 설명이 될 것 같아요!
사실 교육과정 해설서에도 명시되어 있어요.
'도형의 평행이동에 대해 설명할 때에는 축의 이동을 통해 설명하지 않는다.'라고
다만 굉장히 직관적으로 이해가 되고 축의 의미가 무엇인지 생각만 해보면 바로 이해가 되는지라 ㅎㅎ
(x,y) = (a,b)(원래 함수 위의 점)
(X,Y) = (a+m,b)(x축으로 +m만큼 이동한 함수 위의 점)
(a,b) = (X-m,Y) = (x,y)
따라서 x축으로 +m만큼 이동한 임의의 x,y에 대해
(x,y) = (X-m,Y)를 넣어서 식을 정리하니까
결국 +로 이동했으나 부호는 -로 붙어 나오게 되는것
아마 첨에 배울때 이랫던거같은데 맞는지는 잘몰겟네요;
네 맞아요. 그게 교과서의 설명 방식입니다.
그 수식의 의미를 쉽게 설명하면 어떻게 될까요?
![](http://s3.orbi.kr/data/emoticons/oribi/009.png)
고1때는 그냥 그렇구나 하고 넘어갔던 기억이...(쭈글음... 명쾌하게 설명하기가 어렵네요. 생각을 해봐야겠어요...
저도 이 주제에 대해 많은고민했었는데, 제가 얻은 결론은 이렇습니다.
예를들어 정의역이 0이상 1이하인 함수가 있다고 칩시다. 이 함수를 x축방향으로 1만큼 이동시킨다는 것은 정의역을 1이상 2이하로 변화시킨다는것이에요. 하지만 치역, 즉 y값은 변하지 않아야 하죠. 이런 점을 고려하면 함수를 x축방향으로 이동시킬때는 정의역범위를 변화시키면서, y값은 유지시켜줘야해요. 그래서 정의역을 이동시키려는 값만큼 증가시키고, 그래프식 안에있는 x는 이동시키려는 값만큼 빼주는겁니다.
그런데 보통 함수에 대해 논의할때는 실수전체가 정의역의 범위가 되죠. 그래서 증가된 정의역범위가 드러나지 않고, 그래프에서 x가 x-m으로 변하는것만 보이게됩니다.
맞습니다..만 굳이 정의역을 제한하지 않아도 될것같아요
y값이 변하지 않는다는 말만 해주셔도 될듯합니다!
으어... 많은 분들이 생각을 올려주시네요.. 감사합니다!
모든 덧글이 다 옳은 설명이라.. 제가 뭐라 하기 어렵네요.
하지만 제가 생각하는 답은 한줄입니다! 꽤 설득력 있다고 저는 생각해요
저 식과 그림에서 간단한 특징 하나를 뽑을 수 있어요.
뭐랄까 마치 숨은그림찾기 하는 것과 같다고 봅니다.
굳이 이 개념뿐만 아니에요. 여러분은 개념을 깊이 생각하고 있나요?
이렇게 고민 해보신 적이 있으신가요?
저는 생각과 고민이 공부의 양이라 생각합니다. 생각과 고민은 이렇게 질문에서 생기게됩니다.
저렇게 개념에 대해 접근해보다 보면 정말 공부 많이 될것같아요... 수학적 직관력이 빵빵 터질것같은!
평행이동한 함수를 새로운 함수라고 생각하면 이 새로운 함수의 x에다가 뭘 집어넣어야 평행이동 이전에 함수값과 같아질까? 라고 생각해보면 기존 함수를 x 축으로 +m 평행이동한 함수가 새로운 함수이니 이 함수에는 x 에서 +m 만큼 빼주면 이전의 함수와 같은 값을 같겠구나 ! 라고 생각해서 새로운 함수 = f(x-m)
요로케 설명해보고싶네요
맞습니다! 다들 너무 맞는 말씀이어요.
다만 어려운 설명일 수 있어요.
사실 그렇다고 해도 어쨌든 자기가 이해할 수 있는 좋은방식으로 이해하면 장땡이죠.
결국 개념에 대한 고민이란건 최대한 쉬운언어로 받아들이는것.
그걸 사용하기 쉽도록 보이는것을 말합니다.
저도 이거 잘하는지 잘 모르겠어요 ㅎㅎ
덧글 달아주신 모든 의견이 맞는 얘기해주셔서.. 쓸게없네요ㅋㅋ
이번주 토요일 저녁에 칼럼 올리겠습니다.
참 간단한 의문인데, 헷갈릴법한 질문이기도 해요
전 칼럼의 질문은 이차방정식의 해법의 공통점입니다.
저는 10-가의 내용을 배웠습니다. 지금 수1 전 교육과정이죠
10-가에서는 일차방정식 다음에 이차방정식 단원이 있었습니다.
그것으로 유추해보면 이차방정식의 풀이의 핵심을 끌어낼 수 있었죠.
교과서만으로 의문을 갖고 해결하는 공부를 많이 했습니다.
그 과정까지 아울러 설명해보도록 하겠습니다.
생각과 고민이 공부의 양입니다.
교과서만으로도 충분히 공부할 것이 있어요.
그것을 여러 질문으로 전달하도록 하겠습니다