정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
저는 수학자가 아닌 그저 동네 수학 과외선생일 뿐입니다.
또한, 어쩌면 세상을 바꾸고 싶어하는 그냥 20대 청년일 수 있습니다.
어찌되었건, 저는 항상 노력합니다. 이 무언가가 누군가에게 힘이될 수 있기를..
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
저번 칼럼은 이거였습니다!
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정답갑니다.
이제, 우리는 P(0
평균에서 표준편차만큼 두칸 떨어진 곳과 평균 사이의 넓이!
그렇게 생각하는데에 가장 좋은 정규분포는 평균이 0, 표준편차가 1일때라구요.
이렇게 이해해주시고 풀어주시면 나중에 표준화를 헷갈릴 이유가 없습니다!
그렇다면 다음칼럼 가겠습니다.
이계도함수의 정의부터 살펴봅시다!
추가적으로 이 문제를 한번 더 생각해봅시다!
도함수의 도함수를 생각해보세요! 도함수는 무엇이었나요? x에 따라서 원함수 f(x)의 미분계수를 함숫값으로 대응한 함수였습니다.
도함수의 도함수도 x를 대입했을 때 f'(x)의 미분계수를 함숫값으로 대응한 함수겠지요.
미분계수는 무엇이었나요? 접선의 기울기였습니다!!
이쯤되면 명백하게 생각할 수 있겠죠!
정답은 다음 칼럼에 갖고오도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
03 5수(군수)생들아 우리같은 미친 개새끼들이 왜 무서운지 알아? 물리면은...
-
사탐런 할려는데 강사 누구들을지 모르겠음 ㅠㅠ 생윤은 임정환 들을거같은데...
-
둘다 대머리
-
단속기간이라
-
공부가 재밌음. 수능 공부든 대학 공부든, 각각 다른 재미가 있음. 수능 공부는...
-
예비고1인데 작수 2뜸 국어에 시간 쓸 바엔 수학에 투자하는게 맞는 것 같은데...
-
물빨하지 말자 씨발년놈들아
-
아빠가 마트에서 세계 맥주 랭킹 순으로 사와서 마심 다 마신 건 아니고 몇 모금씩...
-
화생으로 수능으로 봐도 됨? 유전이랑 중화반응에서 먹음
-
www.instagram.com/ijeoxen56/
-
이감 파이널 모의고사 10회분 5만원에 팔아요 시즌5 4회차,시즌6 6회차입니다...
-
다메다메 다메요 3
이거 벌써 4년 됨 ㅋㅋㅋㅋ
-
다메다메
-
없어서 강기본 듣고나서 김승리 풀커리 탈려고 하는데요....ㅜㅜ
-
올해도 민지와 랄선생님과 함께 크리스마스를 보낼 테니 솔크는 아니겠지요
-
여기 2명 뽑는데 막판에 18명 더 들어옴 ㅅㅂ ㅋㅋㅋㅋㅋ
-
ㅈㅂ
-
언매공부개열심히했는데 엉엉
-
전에 그림그릴때도 학원에서 1등을 못해봤고 가장 잘하는 과목도 1컷이 한계고 롤도...
-
솔직히상황만되면 0
한번더하고싶은데 그럴여건이아닌게슬프다 그래도좀늘었는디
-
45444 노베재수생이에욤. 서울런 찬스로 3사패스 다 보유중 1.국어 (고민중)...
-
아먀먀 왜케 귀엽지 10
흐흐
-
화작 93백분위 93뜨고 미적 92 백97뜨면 진짜 좆될듯….
-
모두가행복
-
홍대만 기다리고있는데 언제쯤 결과가 나올지.....
-
집에서 니가 수능을 보던 말던 별 상관없고 놀라워하지도 않는다.. 니가 살았는지도 모른다..
-
기하 만표 143 이면
-
수학한문제가계속아른거리네 29번은예상범위에없었어틀릴줄몰랐다고....
-
와 상상도못했다
-
이미지 써드림 9
ㄱㄱ
-
올해의 밈 1
5월부터 지금까지 계속되는 이 드립 "정상화"
-
역겨운 인간들이 너무 많아서 정리하고싶음
-
환급형이 안 된다는건가? 가격이 더 오른다는건가? 아시는 분 있으면 알려주세요!
-
휴르비 전 무물 1
고고
-
왜계속떨어짐 ?
-
전 내일 여자친구랑 놀기로 했는 데 여자친구가 아직 없다네요~
-
라인 같은 걸 몰라서 궁금해요 어느정도일까 대체..
-
물어보는게 이상한건아는데ㅠ 수학 96 100맞으면 높2까진 커버되려나
-
어떻게 지방의 확률이 인설약보다 높게 나오지.. 진학사는 죄다 1~3칸이긴 함ㅋㅋ ㅜ
-
집에 가려면 야간에 고속도로를 타야해요
-
수면시간 0
다들 몇시간 자시나요? 수시 챙기는 고등학생인데 몇 시간이 적절한지 고민입니다. 늘...
-
예전에 공무원 시험 준비하는 만화 보면서 한심했는데 0
내가 공무원 시험 준비하는 만화 주인공처럼 되는 느낌이라 ㅈ된거 같음
-
맞팔구 1
https://orbi.kr/00070001071/%EB%B2%84%EA%B1%B0%...
-
맞팔 할 사람도 구함다..!!
-
ㄱㅊ?
-
시립대 고속 0
지금 적정이면 나중에 떨어지더라도 추합 안정권에는 있을수있는건가용
-
술 맛없지않음? 8
왤케퍼마심뇨
-
고대보내주세요 3
안깝칠게요 아무과나
-
화미생지 85 94 4 89 87 경희대 국캠 될까요? 중앙대 가고싶긴 한데..
음냐 19번 답이 4번이었던것 같은 기억이...칼럼 잘봤어용 ㅎ 교과서는 미근ㅏㅣ엔인가보네요!!
네 맞습니다! 교과서는 M 수학교과서 확률과 통계, 미적분2를 캡쳐했습니다.
이 내용은 비영리적 목적으로 쓰여졌습니다.
두유 두유!
두유그만해
아 맞다 또한, 정규분포 곡선을 좀더 설명하자면
그 밑넓이가 1이고, 좌우 대칭인 종모양의 곡선을 정규분포라 합니다.
가우스 적분에 의해 넓이가 1임을 밝힐 수 있다고 합니다.
응아
설마 그 책내용일...
약간?
0ㅇ0 확통 식이 상당히 복잡해보이네여.. 이번 칼럼도 잘 읽었어요 감사합니다!
과연 읽었는가..
읽었어요 ㅠㅅㅠ 근데 19번은 잘 모르겠다는게 함정!
일단 변곡접선 얘기를 좀 하고싶었어요.
그리고 확통식이 너무 어려우면 제껴도됨
중요한건 확통식이아니고 결론이져
직접 만든? 저 이거 무료배포 의향있으신가요 보고싶어요
확통부분은 책으로 냅니다.