2014 7월 모의고사 수학B 30번 한완수를 이용한 풀이
2014 7모 수학B 30번 풀이.hwp
2014 7모 수학B 30번 풀이.pdf
한글 파일, pdf 파일 모두 준비해놨으니 필요하신 분들은 가져다 쓰세용 ^^
과외 학생에게 쓸 자료인데, 여기다가도 한번 뿌려봅니다 ㅎㅎ
잘 보셨다면, 좋아요 눌러주시면 정~~말로 감사하겠습니다. 보다 많은 사람이 봐야하니까요 ^^
p.s 들리는 썰에 따르면 평행한 면을 바로 찾거나, 법선벡터를 이용해서 풀어낸 경우도 봤습니다.
이런 경우의 풀이도 한번 생각해보시기 바랍니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
결국 미적분 잘 맞을거 같기도 하고 자연계중에 미적/기하 필수인데도 있다해서 그냥...
-
원래 김동욱쌤 들을라고 했는데 공부 못하는 사람 특이긴 한데... 9모 해설 봤는데...
-
이렇게하는거 맞나요?
-
영어에피를 따고싶어요 일단 에피가능한게 토익, 텝스, 토플 같은데 토익은 올해초에...
-
역학만 3개를 봐야 함.. 미쳣네
-
하긴 내가 바라보는 면이 세상의 전부는 아니니...!
-
30분 했다 오늘 공부 끝~~
-
본인: 여기서 최초로 대학 문턱 밟아본 사람임 실제로 집안“어른“중에 최고학력이 상고졸업 아버지임
-
재수할라고 맘 먹었는데 다들 사탐런사탐런 거려서.. 현역때 6모 생지 각각 2, 5...
-
ㅈㄱㄴ... 장학금은 학기중에 들어오는 거 맞나요 그러면 만약에 당장 목돈이...
-
항상 드는 생각이지만 다이어트 시작하면 왜이렇게 귀신같이 유튜브 알고리즘이 먹방으로...
-
아 금테 300명이구나 11
200명인줄 난 수능볼때까지 못달겠네
-
사탐 의대 0
정말 궁금해서 올려봅니다... 내년 2026 입시에서 사탐 의대 가능할거라고...
-
의대생들 입장에선 그게 또 아닌가 현직들한테 듣는 상황은 아직 그리 나쁘지는 않은거 같던데…흠
-
내가 번호 물어보면 다들 죄송합니다 이러는데 어떻게 감사합니다랑 죄송합니다를 뜻을 헷갈릴수가 있지
-
야식 추천 좀 5
야무진 걸로 비싸면 안 됨
-
보카로 듣는걸로 ㅈㄹ하는거 ㅈ같아서 걍 밖에서 jpop 듣고 다닐거임
-
떼잉 쯧
-
뭐 그렇지 않은 사람들도 있겠지만 대부분 1. 기업 CEO / 기업 대표 성공하고...
-
이명학 수능루틴 0
작년거랑 내용 다른가여?? 작년거 써도되나용
-
자극 개쩌네 삼반수각인가
-
과탐 수능 2등급 2등급 국어 3등급 (백분위80)로 마무리지을것 같습니다. 내년에...
-
언매 93 2등급 미적 80 3등급 ?????? 동시에 이럴 확률은????
-
졸리다 졸립다 8
뭐가 맞음
-
빨리 옷 추천해조
-
제발..
-
인증메타는 17
언제쯤 다시 열리나요 대기중 . . .
-
그딴건 없고 제 아내 보고 가세요
-
그래서 오르비언들 볼때마다 참기힘든것 일루와잇
-
강대 크럭스 사볼까 하는데 퀄 어떤가요?!
-
14 20 21 22 틀려서 84 나왔는데 뭐부터 해야 할까요 ㅠ 뉴런?
-
우웅 14
우웅
-
사문 1컷 1
사회문화 1등급 46일까 45일까
-
시즈카 화형식하면 보실분
-
문학/비문학 한문제씩 만든 문제 한번 풀어보실분 있나요 쪽지로 메일 남기시면...
-
건대 전과 쉽나여
-
지역인재로 의대 썼는데 보통 ㅈ반고 전교권들 대상이면 최저 충족률이 어떻게...
-
인류 역사상 최고의 날먹과목
-
2월군번 99점인데 영끌하면 제가 100점정도 될것같은데 진지하게 헌급방 가야하나
-
다들 폰 뭐쓰심 11
저는 아이폰14 일반 작년 3월부터 쓰고있고 26년 초쯤 조카 주고 17로 바꿀듯
-
21살이라 벌써 입시가 2년이나 지난 사람 vs 21살인데 아직 입시에 매여있는...
-
탈퇴 전 무물보 17
육군 군수 투자 (오늘자 시드 4.7억쯤 됨) 기타 등등
-
대충 라인 0
언미영물1지1 84/81/2/37/42 어느 정도 생각하는 게 좋을까요? 낙지는...
-
오
-
중학교 때 공부를 잘 하는 줄 알았습니다. 과고를 준비했었고 의대(...)에...
-
정시 컨설팅 0
정시 컨설팅 적당한 가격에 유명한 곳 어디인가요?
-
곱셈공식...
이 문제를 정사영해서 이면각구하셨다는 말씀인가요 ??
저는 어차피 이면각을 구하는 거니까 원기둥에 생긴 면을
정육면체로 끌고 내려와서 매치시키니까 정사면체 이면각과 똑같길래 정말
1분컷으로 풀었었는데;;
그렇게 푸는 것이 가장 빠르다는 것은 인정합니다. 제 풀이법은 일종의 대체재 성격을 띄는 풀이입니다. 시험장에서 평행한 면을 보지 못했을 때를 대비한 풀이라고나 할까요 ㅎㅎㅎ 만약 시험장에서 교육청의 풀이법이 안보였다면 어떻게 하면 좋을까라는 발상에서 만든겁니다.
아... 공간도형 문제는 풀이법이 다양하니 님의 풀이도 공부해봄이 좋을듯싶네요 감사합니다ㅋㅋ^&^
단면화 과정이 전혀 이해안되네요 저렇게 단면화 된다는 보장이 있나요? 코멘트없이 쓸 정도로 전혀 자명해보이지는 않네요
평면을 하나의 직선으로 보는 것의 단면화의 핵심입니다. 세개의 평면 중 어느 하나라도 평행한 평면이 없고 공통 교점을 가지는 평면이 없다는 것은 그림으로보면 너무 자명한 사실이구요 그래서 저렇게 삼각형 모양으로 단면화해도 문제없습니다
아무튼 좋은 의견 감사드립니다 ^^
저두 ㅎㅎ 그냥 길이 적어보니까 맞는거같아서
좌표풀이 만사형통
법선벡터의 각!
닥 외적
외적 몰라요ㅠㅠ
님처럼 수학 잘하면 수학 엄청 재밌을 듯 ㅜ
문과라서 무승 말인 지 하나도 모르지만
좋아요 누르고 가요!ㅋㅋㅋ
이분참 재미지단말이야 ㅎ
이렇게 단면화 시키려면 먼저 세 평면이 공통교점을 가지지 않는다는 것과 한 평면에서의 법선벡터가 나머지 두 평면의 교선에 수직한다는 점을 먼저 증명시켜야 단면화논리가 성립함.(작년수능 29번문제하고 같은 논리) 이거 먼저 언급하고 적용하시면 완전한풀이가 될 듯
좋은 의견 감사합니다 ^^
위위위에 댓글에 이미 단면화 논리 알고 계셨군요 ㅎㅎ
일단 댓글 써놓고 단면화 되는지 확인해 보니까 이분말대로 공통교점있고 법선벡터가 나머지평면 교선에 수직하지도 않네요 이거 단면화 논리 오류인듯
공통교점은 점 D라고 나오는걸 봐서는......
시간이 많이 남아거 영혼없이 평방 구했네요 ㅋㅋ
단면화를 하려면 두 면의 교선이 점으로 보이는 시점에서 두 면을 직선처럼 보는건데
저 그림대로라면
면 DEG와 밑면과의 교선,
면 PQR과 밑면과의 교선,
면 DEG과 면 PQR의 교선
이 세개의 교선이 평행해서 한점으로 보이는 시점이 있다는 건데 실제로는 교선들이 평행하지 않으니 문제풀이에 오류가 있다고 생각합니다.
걍좌표로풀고 외적써ㄷ
넘 오래걸려요 ㅠㅠ
외적 굳ㅋ 2분컷
정말 문과와 이과는 종이 1억장 차이다
그럼 이 문제를 단면화로 푸는건 논리적 비약이 있다는건가요?? 어떻게 답은 맞는건지요?
저는 정사영을 2번하는 방식으로 풀었는데 어떻게 생각하시나요?
그냥 넓이에다가 코사인세타1과 코사인세타2를 곱해서 1/3값을 곱했는데 답은 맞았거든요
저 교육청풀이가 cp를 이용하여 푼거아닌가요
저도 저렇게풀엇는데..
제가 머리가 나빠서 논리적으로 맞지않다고 생각하는건진 모르겠는데, 답만 옳게나오는 짜맞추기풀이아닌가요?
저거 단면화과정 없어도 괜찮지않나요? 어째선지 저방식하고 비슷하게 그냥 cos세타1 cos세타2 구해서 두개 덧셈공식해서 구했었는데...
그냥 잘못 푼 거 같기도 해요. ㅠㅠ
코사인세타1오타잇으세요 DI/IH ---> IH/DI
네 확인했어요 ㅠㅠ 죄송합니다