(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나쁘지않을지두
-
혼자긴 해요
-
딴거 정보 알아보느라 존나 바빠서임 오해 ㄴㄴㄴㄴㄴㄴ
-
정말 아쉽다 산타할아버지한테 선물 고맙다고 말 못하는거랑 똑같다고 생각해야지
-
2021년 후반기정돈 되어야 좀 실감나는듯
-
.
-
크리스마스 기념 7
질답 메타 굴릴게요! 질문 안해주면 잡아먹을거임뇨.
-
적정표본수 늘면서 칸수도 지랄낫는데
-
링크 남기시면 하나 스근하게 적어드리고 원하시면 대댓글로도 남겨드림.. 이미지 적는것처럼 고고
-
임산부석에 앉아서 갈 수 잇나
-
그래도 나 혼자 볼꺼지만요 :p ……정말 고마워요
-
편의점 알바교육 받고왔는데 뭐이리 어려워 정확히 일주일 뒤부터 시작인데 교육받자마자...
-
누군지 모르겠는 분... 감동이에요 세상엔 천사가 존재한다
-
저 화학할꺼에요 12
말리지마삼
-
ㅇㅇ 7
-
잘가... 이번엔 진짜 간 것 같은데 대학생활 잘하고
-
한의대도 궁금함뇨
-
아오 물리시치 8
-
기만하러 온건가..
-
몇몇은 동태가 수상한데 11
놀러가놓고 슬쩍슬쩍 오르비에 쓰나봐.
-
금요일수업인데? 아직도 발송준비중이면 목요일까지 안오는거아님..? 내일은...
-
말이 됨?
-
한참 신속항원검사 적용시간 축소하고 기존에 문자로 보내주던 음성확인서를 종이로 주기...
-
나도여내할래 4
미친척하고 인스타에 스껄할래요푸릴까
-
크리시발마스 0
뒤1져라
-
작년에 넣어놓은거같은데 이거 자동입력시스템? 그런걸로 넣어놓은건지 뭔지 기억이...
-
ㅇㅎ 님이에요 진짜누군지모르겠어요... 누군지는몰라도진짜고마워요 진짜로요. 감사해요
-
9시에 자니까 12시에 깨더라고,이제 새벽 내내 오르비 함
-
ㅇㅇ 곧있음 그날보다 2030년 1월 1일이 더 가까워짐
-
25수능 물1 현장풀이입니다. 18번은 현장에서 미지수 범벅으로 풀어서 공부에 딱히...
-
배아파.. 7
뿌딕
-
커플죽어
-
옯서운이야기 6
일주일 뒤 이 시간은 2025년입니다...
-
고봉밥 트리쓰기 0
아무말이나 주절주절씨부리기
-
정말 따숩고 심성이 고운 분들이 많아요... 그리고 되게 의외인 분들이 길게...
-
https://orbi.kr/00070809190 수요 적으면 모집글 안올릴거에요 ㅠㅠ
-
나는 일단 한의대 걸어둿음. 근데 걍 지방한임. 1-1부터 유급 처먹어서 돌아가도...
-
(장문주의) 학원강사 수업 방식 조언 좀 부탁드립니다. 0
좋은 기회가 생겨 동네 영어학원에서 고등학생들 상대로 어법 특강 수업을 맡게...
-
왤케 불안하냐 1
성대보내줘
-
이게맞
-
노망on 0
올때마다저래
-
익명으로 열심히달앗음 제가대놓고표현을잘못해서 다들메리크리스마스
-
의대생분들,현직 의사분들이 생각하시기에 의사가 앞으로 10년 후에 지금만큼의 수입과...
-
진로적 차이 많이 남? 찾아보니까 요즘엔 비슷하던데
-
고1 수학 처음 배우는애 기준 개념 수업 하고 그에 딸린 연습 문제같은거 몇개...
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다