미적분 자작문제
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 19금요소는 놓을필요가 있었나 너무 적나라해서 별로였음
-
후기좀 알려주세요
-
23 수능이 마지막 수능인데 이때 수학 1등급이었습니다. 이때까지 평가원, 교육청...
-
얼버기ㅣㅣ 4
병호쌤 현강가야돼ㅐㅐ
-
점공으로 해서 붙은 사례가잇음? 이런거처음봐서 신기
-
제 친구가 외고 나왔는데 주변에 cpa 준비하는 사람들 많이들 떨어진다고..
-
시발 ㅈ같다 0
스터디카페 깊숙이 자승자박의 흰 동굴에 들어앉다 창밖에는 수삼 눈송이 사슴의 깊은...
-
뭐하려하면 손님 들어옴요
-
요즘 독감 유행이라 독감 걸렸는데 어제 억지로라도 수학 현강 가려고 독재에서...
-
지인나눔 해주실분 구합니다.
-
기묘함 약간 양자적인 상태랄까?
-
수1할때 노잼이라 좀 고통스러움
-
생윤 사문 생윤 지1 사문 지1 생1 지1 평가원 기준 국수영 433...
-
그낭 일년 쭉 따라가나요? 아니면 방학동안 단기과외같은것도 있어요?
-
시급 2만원?? 더받나요?
-
뭐가 되게 많네요 어디는 뭐 기하를 받는건지 마는건지 기하사탐 기준으로 시대가...
-
첫사랑썰 7
고1이었나 고2이었나 그때 나랑 4살 차이나는 임자 있으신 분을 좋아했음 . . ....
-
접수 1,2일 전후가 ㅈㄴ중요하게 작용하지 않음? 씨발 왜 이런거임
-
이놈의 점공 때문에 신경쓰여서 미치겠어요… 집중이 안 될 것 같은 느낌
-
700일 안 됨 근데 혼자로 돌아가려니 어떻게 지냈는지 기억이 전혀 안나 연애하니까...
-
27수능 보는데 4
화2 지2 갠찮을까요
-
398.5 가능할까요? Bb일 것 같은데 경영 쓸까 하다가 경제가 추합이 조금이라도...
-
얼버ㅣ기 1일차 2
-
사실 고민보단 그냥 욕을하고 싶은거야 근데 난 만났던/만나는 사람 욕 이젠 못하겠음...
-
저는 하루지나면 까먹고 뭐 이러던데 미드같은거 보면서 자연스럽게 익혀야하나 일본어도...
-
내가 병신임.. 새해부터 정신개조 씨게 당하는 기분
-
복습시간이 순공부시간의 약 절반정도 차지하는 거 같은데 제가 볼 땐 너무 많은...
-
야간편돌이 졸려죽겠다 12
하…
-
선넘질 가능으로 통매음으로 고소할 수 없게 vpn이나 토르 이용하게 해서 이런게...
-
사탐 만점 vs 과탐 1컷이어도 무조건 사탐>>>>과탐인가
-
ㅈㄱㄴ
-
저도 해주세요 0
https://asked.kr/geometryhahak
-
자야지 2
-
ㄷㄷㄷ
-
이걸 맞춰? 8
어떻게 알았지
-
생1 ㄷ 생2 13
생1은 유베고 (6모 47 9모 50 수능 37ㅋㅋ) 생2는 쌩노벤데 수능에서...
-
넘어져도 다시 일어나면 되는 것이죠...
-
https://asked.kr/orbi_smarty
-
미적 생지 선택인데 할 것도 없어서 기벡, 물리를 예습해갈려구 해요. 혹시 공대생...
-
옛날에는 평범한 인서울 전화기나 지거국 나와도 취직이 잘 됐었는데... 10
요즘은 신입 공채가 예전보다 줄어서 신입으로 대기업을 가는 건 어렵다고 하네요......
-
현실에 싸진 않음요 다행이다.. 식은땀 났네
-
비단 제 목표, 욕심, 열등감 때문이 아니에요 가장 큰 다른 이유가 있지만 좀 말하기 부끄러움…
-
최고의 아침 0
전날 먹다남은 보쌈+짬뽕국물 아침에 이거보다 맛있는 식사를 한 기억이 손에꼽음
-
윗 학생이 다른 학교로 빠질 점수가 되는지 안되는지 모른다는 겁니다 가장 좋은 건...
-
기차지나간당 10
부지런행
-
술도 안마시고 11
게임도 안하고 스포츠도 안하면 친구 사귀기 힘든듯요 진짜
-
한국 공학대 0
진학사 표본상 2등이였는데, 1등은 3지망이였어요…수석 가능할까요…ㅇㅅㅇ 장학금...
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..