[박수칠] 함수의 극대·극소와 미분계수
안녕하세요~ 박수칠입니다 ^^
지난 번에 올렸던 ’극대·극소의 새로운 정의 이해하기’에
많은 관심을 보여주셔서 감사합니다.
1, 2월에 올린 칼럼 가운데 가장 최근 것임에도 불구하고
조회수와 좋아요가 가장 많이 나왔어요.
(오르비 페북에 링크됐던데 그 덕분일 수도 있겠네요.)
그런데…
칼럼을 읽은 분들의 반응을 보니
살짝 우려되는 부분이 생겼습니다.
칼럼을 쓴 의도는 ‘극대·극소의 새로운 정의를
다양한 함수에 적용해서 깊이 있게 이해해보자’였는데
생각과 다르게 새로운 정의가 어렵다는 반응이 많네요.
이것은 극대·극소의 새로운 정의(이하 확장 정의)가
다양한 함수에 적용 가능하기 때문에 생긴 착시라 봅니다.
미적분1, 2 교과서나 수능/모평 기출을 보면
극대·극소 문제는 연속이면서 함숫값이 일정한 구간이 없는
함수를 대상으로 하고 있습니다.
이 경우로 한정해서 확장 정의를 적용하면
주변보다 높은 봉우리는 극대점, 주변보다 낮은 골짜기는 극소점
이라는 해석이 가능하지요.
알고 보면 쉽습니다 ^^
극대·극소 확장 정의는
다양한 함수에 적용 가능하다는 것 외에
또 하나의 장점이 있습니다.
바로 함수의 극대·극소와 미분계수 사이의 관계를
수식적으로 쉽게 연결시켜준다는 점이죠.
바로 확인 들어가야죠? ^^
미분가능한 함수 y=f(x)가
x=a에서 극대라고 가정합시다.
그럼 극대·극소의 확장 정의에 의해
어떤 열린 구간 I에 속하는 모든 x에 대하여
f(a) ≥ f(x)가 성립합니다. (단, a ∈ I)
따라서 f(x)-f(a) ≤ 0가 되고,
x=a에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→a-일 때 x-a < 0, x→a+일 때 x-a >0)
함수 y=f(x)가 x=a에서 미분가능하므로 f’(a)가 존재하고,
위 부등식으로부터 f’(a)=0임을 알 수 있습니다.
미분가능한 함수 y=f(x)가 x=a에서 극대일 때
f’(a)=0이라는 사실이 쉽게 증명되죠?
미분가능한 함수 y=f(x)가 x=a에서 극소일 때
f’(a)=0인 것도 같은 방법으로 증명할 수 있습니다.
그리고 다음과 같은 명제를 만들 수 있습니다.
위 명제는 미분가능한 함수 y=f(x)가
함숫값이 일정한 구간을 가질 때도 적용됩니다.
함수 y=f(x)가 닫힌 구간 [c, d]에서 함숫값이 일정할 때
열린 구간 (c, d)에서는 극대인 동시에 극소,
x=c, d에서는 극대 또는 극소라는 사실 아시죠?
함수 y=f(x)가 구간 (a, b)에서 미분가능하다면
닫힌 구간 [c, d]에서 f’(x)=0이기 때문에
위 명제가 성립함을 알 수 있습니다.
그리고 함수의 극대·극소와 미분계수의 관계에서
주의할 점이 두 가지 있는데…
첫 번째는
’함수 f(x)가 x=a에서 미분가능할 때
x=a에서 극대 또는 극소면 f’(a)=0이다’ 는 참이지만
그 역인 ’f’(a)=0이면 함수 f(x)는 x=a에서 극대 또는 극소다’는
거짓이라는 점입니다.
미분계수가 0이지만 극점이 아닌 경우가 있기 때문이죠.
두 번째는
함수의 극대·극소와 미분계수를 연결하다 보면
미분불가능한 점에서 극대·극소가 나타나지 않는다고
착각하기 쉽다는 점입니다.
하지만 아래와 같이
미분불가능하지만 극대 또는 극소인 경우가 있기 때문에
주의해야 합니다.
마지막으로 한 가지 더!
함수의 최대·최소는 극대·극소와 정의가 비슷합니다.
단지 ‘어떤 열린 구간 I’ 대신 ‘정의역’이 자리할 뿐이죠.
그리고
‘미분가능한 함수 y=f(x)가
x=a에서 극값을 가질 때 f’(a)=0이다’를
증명하는 과정에서 극대·극소를 최대·최소로 바꾸면
롤의 정리에 대한 증명이 됩니다.
볼까요?
i) f(x)가 상수함수일 때
f’(x)=0이므로 c의 값은 열린 구간 (a, b)에 속하는 모든 실수입니다.
ii) f(x)가 상수함수가 아닐 때
함수 f(x)가 닫힌 구간 [a, b]에서 연속이므로
최대·최소 정리에 의해 이 구간에서 최댓값 또는 최솟값을 갖습니다.
① 함수 y=f(x)가 x=c (a < c < b)에서 최대일 때
최대·최소의 정의에 의해
정의역에 속하는 모든 x에 대하여
부등식 f(a) ≥ f(x)가 성립합니다.
따라서 f(x)-f(a) ≤ 0가 되고,
x=c에서의 좌미분계수와 우미분계수는
다음을 만족합니다.
(∵x→c-일 때 x-c < 0, x→c+일 때 x-c >0)
함수 y=f(x)가 x=c에서 미분가능하므로 f’(c)가 존재하고,
위 부등식으로부터 f’(c)=0임을 알 수 있습니다.
② 함수 y=f(x)가 x=c에서 최소일 때
(같은 방법이므로 생략)
오늘은 여기까지 입니다.
긴 글 읽어주셔서 감사드려요~ ^^
[알림] 미적분1-다항함수의 미분법 부교재 업로드 되었습니다.
다음에 작업할 부교재는 미적분2-미분법입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
상황 이렇게됐다고 쩝 어쩔수없네 해제 동의합니다 할 새끼였으면 애초에 계엄이란걸...
-
계엄령 해지를 해지함ㄷㄷ 강기분에서 배운건데 이러면 이중부정이어서 처음게 맞으니 계엄령을 하는 거임
-
휴 0
휴
-
ㅋㅋ 저정도 열의라니 대단한듯
-
제 7공으로 뵙겠습니다 뭔생각이었냐 진짜
-
이게 머임
-
가결된거랑 니 오르는거랑 먼 상관인데 대체 ㅋㅋㅋㅋ
-
제대로할줄아는게 뭐지?
-
야밤에 모인김에 다시 집가기 귀찮잖아
-
대 권 분 립 ㅋㅋㅋ
-
후아후아
-
너무 빠르네,,,, 걳성이 바로 5분만에 바로 아쉬움으로 바뀌는게 참,,, 인간이 간사하다,,,
-
계엄 진짜 뭐지 2
국회라도 막을줄알았는데
-
석열이형이 국무회의열고 심의해서 해제해야하는거아님? 그대로 끝나나
-
대 윤카의 생각이셨던거징 느슨해진 대한민국에 긴장감을 주네
-
탄핵되고 새로 대통령 뽑히고 의대 정상화로 모집정지되거나 정원 대폭 축소되면 올해...
-
새삼 2스타로 쿠데타를 해낸 전두환이 진짜 대단하게 느껴진다
-
ㅇㅇㅇㅇ 본회의장에 안보이는데 좀 더 기다려 봐야할듯
-
그럼 자는 의원들 몇명있을텐데 3시간 천하하고 무기징역가겠노 ㅋㅋ
-
군인들 다 제자리로 돌아가야 종료지 미친 명령이 하달될지는 아직 모름
-
국회에서 해제 가결해도 ㅈ까고 군인동원은 못하는거임요?
-
아니..뭘 하려던거지?
-
이대로 안 끝날듯 다들 글 조심
-
안막으면 과장이 아니라 정말로 나라 망함
-
진사람 3시간동안 어그로끌고다니기
-
지금 군 상황 어떻게 되는지 모르지 않음?
-
씨발 나 내년 수능 응시해야된다고
-
법 위계가 3
헌법> 법률> 명령 규칙이라 포고령은 헌법아래아님뇨?
-
.
-
의사의 승린가
-
이제 끝난건가 0
설마 윤석열이 이걸 예상 못했으려나 더 있을수도
-
이상입니다.
-
어휴
-
그냥 지능에 문제? 있으신듯 퓨ㅠㅠ
-
근데 이러면 1
당장 내년 수능부터 어떻게 되는 거임
-
계엄령 내린건 2
다 이유가 있겠지
-
지렁이도 밟으면 뭐한다? “꿈틀”한다~
-
이시간대에 1분에 글이 수십개씩 쏟아지는거 처음봄 ㅇㅇ ㅋㅋㅋㅋㅋㅋ
-
계엄해제 민주당 집권 중앙대 출신 대통령 탄생
-
아가 자야지 2
모두 굿나잇
-
윤통 측에서 계엄포고령을 근거로 국회 의결 무효라고 나올 것 같음 포고령 1항이...
-
군인들 개인이 그냥 포기하고 가도 되지 않나
-
포고령 1번이 국회 어쩌고라서 령 이라서 국회보다 못하나
-
2036학년도쯤 수능에 나올려나
-
왜한거야??? 짜고치는 고스톱도아니고
-
두 눈으로 보다니...
-
무한선포하면 되는거 아님?
함숫값이 일정한 구간이 있는 함수에서도 극대극소가 적용되나요? 왜죠?
구간내에서 해당 값보다 큰값만 없으면 극대이므로 상수함수는 모든값이 극대 모든값이 극소입니다.
지난 칼럼에 자세하게 설명되어 있습니다.
http://orbi.kr/0007982857
칼럼 매번 잘 읽고갑니다!
늘 와주셔서 감사합니다 ^^
쵝오.
오늘은 일찍 오셨군요 ^^
감사합니다~
먼저 좋아요 누르고 읽으러 갑니다
와주셔서 감사합니다~ ^^
좋은글 감사합니다~
읽어주셔서 감사합니다 ^^
학생한테 과외하면서 쉽게 가르친다고 극점은 도함수 부호가 바뀌는 지점이라고 설명하는데 이러면 곤란할까요...? 이런
못하는 학생 대상이에요
본문에도 언급되어 있지만
교과서/수능으로 한정했을 때 극대, 극소 문제의 대상은
함숫값이 일정한 구간이 존재하지 않는 연속함수입니다.
이런 경우에는
(극점)=(도함수의 부호가 바뀌는 지점)이라고 할 수 있죠.
별 문제 없어 보입니다 ^^
아 감사합니다!
좋은 글 감사합니다^^
저도 읽어주셔서 감사드립니다 ^^
박수칠때떠나라
박수 받으려면 아직 멀었다니까요... ㅡㅡ;