[박수칠] 미분계수와 함수 극한의 관계에 대하여
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수능 안본다. 0
깔깔
-
25학번 4500명 뽑을수 있을까요? 그대로 뽑는다면 의대생들(25학번 포함)...
-
이때쯤 수능을 보았었는데 아침의 어두컴컴하고 차디찬 수험장에 들어서며 마음을 다잡고...
-
고사장 학교 들어가서 아파트 30초정도 부르고 왔습니다 교문앞은 아니고 고사장...
-
이 시즌만 되면 괜히 떨리네... 이제 안치니까 넘 좋다ㅠ
-
오늘보다 조금 더 추웠던 날들인것 같은데 두번째 수능이라도 수능은 긴장이 되더라구요...
-
[제주=뉴시스] 오영재 기자 = 14일 제주에서 잇따라 지진이 발생했다. 기상청에...
-
선배님들 2
선배님들 힘내세요 고2가 응원합니다
-
킬러 없다 공교육만으로 풀 수 있다 평이하다 아무도 안 믿을 거 지들이 제일 잘 알면서
-
이제 저거 사야되냐?…
-
잏으면 안되겠지..? ㅋㅋ
-
헐 시작햤겠다 1
ㅜㅜㅜㅈㄴ 떨리노
-
후...
-
시작 3
국어 파이팅!!!
-
국어 짜요
-
수능 안보는 사람들 15
댓글 달아봐요 ㅋㅋㅋㅋㅋㅋㅋㅋ 맘편히 관전합시다
-
살다 보니 이런 날도 오네요..
-
잘보십쇼
-
수능 샤프 뭔가 1
빨간색 계열 하나 나오면 좋겠음 내가 받은거 다 퍼런색 계열인듯..그때 그 똥색 빼고
-
냥
-
이제 여긴 내 세상이다
-
1교시인데 지각하겠네ㅆㅂ
-
수능끝나고 나왔는데 교문앞에서 엄마가 꽃다발을 안겨주시면 8
좋다? 부담스럽다? 챙피하다? 딸이 힘들게 재수하고 지금 수능치루는중인데 꽃다발들고...
-
신발 어때요
-
직년 수능끝나고 수능 관심1도 안줬는데 블 평가아닌가요? 현장에서 국어는 진짜...
-
대박나시길 기원할게요~~~
-
수능샤프 스포함 1
방금 받음 ㅋㅋ
-
9모 때 그렇게 쉽게 냈으면 이번에도 난이도 조절 실패했겠지
-
흠..
-
수능한테 찢어 발겨져버렸우니 그럴수밖에긴한데
-
어제 울면서 어뜨카냐고 그러던데 에휴 잘푸는애가 걱정은 많아가지곤... 국어 끝나고...
-
나이는 20대 중반ㅋㅋ
-
잠이 안 오네요 ㅋㅋ ㅠㅠ 모든 수험생들 파이팅
-
이제부터 우리들의 시간이다 D-365
-
가자
-
지금 4
화장실 가도됨?
-
2025는 45의 제곱입니다 모르는 주관식들 45로 찍으십쇼 ㅋㅋㅋ
-
스카가는길에 학교 지나가는데 내년에 내가 저러고 있을거 생각하니깐 벌서부터 떨리네요..
-
깔아드릴께요 2
-
수능날 큐브 0
이제 질문경쟁 치열해지겠네
-
할수있다 너무 큰 부담갖지 말고 내가 할수있는 만큼 하고온다는 생각으로 뿌수고와요
-
화이팅 1
이제 시작이다
-
잘 보세요~
-
진짜 ㅈ댓는데 후드티 쓰고 풀어야겟다
-
개념의 나비효과 문학 듣고 있는데 독서도 괜찮나요?? 이거 다 듣고 김젬마T 별헤는...
-
ㅋㅋ
-
뭐가 더 좋을까용
좋은글입니다!
감사합니다! ^^
소위 말하는 '야메'같아 보이는 나만의 공식도 논술에서 제대로 증명을 해내면 사용해도 되겠지요?
글쎄요... 채점 기준에 대해 잘 모르지만
교과 과정에 충실하게 작성한 것이
모범 답안이라 생각합니다.
특히 논술의 경우에는
문제 해결에 필요한 교과 과정 내용을 제시문의 형태로 주기 때문에
그 테두리 내에서 해결을 해야 좋은 점수를 받을 수 있을 겁니다.
갓수칠
언제 들어도 좋은 말이네요~ ^^
이걸 적절히 연습할 수 있는 문제가 예전 사관학교 ㄱㄴㄷ문제에 있죠
아 그런가요?
요즘 출제 경향에선 살짝 벗어난 감이 있지만
개념 이해에 참 좋은 유형이죠~
뭐야
미정계수구하는거분명히배웠는데왜처음부터뭔소린지하나도모르겠지???
ㅠㅠ
미분계수의 정의 바로 다음에 나오는
함수의 극한 유형을 복습하면 됩니다~ ^^
사실 많은 사람들이 아무 관계가 없는 내용인데 미분가능성을 전제로 두고서 막 미분하는 경향이 있는데 그런 사람에게 보여주면 아주 좋은 글인것같습니다!
감사합니다.
개념에 대한 이해가 부족한 상태에서 문제를 풀 때 위험한 것이
'이렇게 해서 답을 맞췄으니 다음에도 똑같이 하면 되겠지'
라고 생각하는 걸 겁니다.
답을 맞췄더라도 미심쩍은 부분이 있다면
이유를 꼭 확인해야 되겠죠.
앞으로도 개념을 이해하는데 도움이 될 만한 글
종종 올리겠습니다.
딱저네요..미분가능성 전제해서 막미분..
이관데 이런개념들부족하면 수1을다시보는게맞겠죠?
h가0으로갈때 h^2이 0+로가는건 왜그런건가요..
(실수)²≥0이기 때문이죠.
h→0이면 h²→0이고, h≠0이니까 h²>0입니다.
따라서 h²→0+가 됩니다.
함수 y=x²의 그래프를 그리고 x→0일 때 y값의 변화를 보면
0보다 크면서 0으로 다가가기 때문이기도 하구요.
그리고 본문의 내용들에 대한 이해가 부족하면 수학1을 다시 보기보다는
공부할 때 디테일 있게 하는 것이 중요할 것 같습니다.
개념 이해한 다음 다양한 유형을 풀 때 맞췄다고 그냥 넘어가지 말고,
해설을 한줄한줄 보면서 왜 이 방향으로 가는지 자꾸 따지는 거죠.
' f"(x)>0이면 f(x)가 아래로 볼록하다 ' 라고 외우지 말고
' f"(x)>0이면 f'(x)가 증가하고, f'(x)가 증가하면 접선 기울기가
점점 증가하는거니까 f(x)가 아래로 볼록하다 ' 라는 식으로
중간 과정을 집어 넣으면서 이해하는 것이 중요합니다.
갓수칠님이 마지막에 말하신방식대로 미2공부를 다 끝냈습니다
근데 개념이부족하다는 찝찝함과 불안감은 왜항상있는걸까요..?
미2정석을 꼼꼼히봐도 개념을확실히안다는 느낌이안오더라고요
예를들어 역함수문제를풀때 일대일대응이라는것에 꽂혀서풀다가 문제가안풀림을알고
10분고민뒤에 단조증가 단조감소의 특징을 기억해내고 문제에적용합니다
풀었는데도 찝찝하고.. 체크해놧다가 다시풀어야하나 생각도들고..
개념을 완벽하게 안다는 것을 제자신이 어떻게 알수있을까요?
답변해주시면 정말감사하겠습니다 ㅠㅠ
어떤 책으로 공부하든, 개념을 완벽하게 알 수는 없습니다.
중요한 것은 반복하면서 이해도를 끌어올리는 것이죠.
문제 풀 때도 마찬가집니다.
내가 이해한 것보다 높은 수준을 요구하는 문제도 있고,
'내가 잘못 이해했구나'라는 깨달음을 주는 문제도 있습니다.
이럴 때 필요한 것이 필기고 정리죠.
지금 이해했고, 풀 수 있다 하들 나중에도 그럴거라는 보장은 없습니다.
개념 공부하면서, 문제 풀면서 새롭게 깨달은 것이 있으면 꼭 기록해야죠.
그리고 완벽해야한다는 강박 관념보다는
빈 부분이 생기면 꼭 보충해야 한다는 강박 관념을 가져야 합니다.
수학은 '이 정도면 됐다'라 생각하는 순간 망하거든요.
개념 복습 안하고, 문제 덜 풀면 금방 감이 떨어집니다.
이 부분 개념 복습할때 항상 힘들었는데 자세한 설명 감사드립니다.
앞으로도 특정 개념/유형에 대한 해설을 종종 올릴 예정입니다.
많은 관심 부탁드립니다~ ^^
WOW 시원하네요 진짜 최고네요 미분계수의 정의에 따르면 저 풀이가 안되는데 저렇게 푼 풀이가 왜 있는지 엄청 궁금했었는데... 저것 때문에 잠이 안와서 늦은 시간까지 저 풀이에 대한 것만 엄청 찾았네요
정말 고맙습니다♡ 진정 수학 고수 이시네요
감사합니다! ^^