컴공 일기266
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전과목을 애매하게 올리려하지 말고 한과목의 한 단원을 마스터하고 다른과목의...
-
탈릅한 모 오르비언이 플어보라고 던졌는데 제가 "내가 어케 아닝!!" 라고 했더니...
-
물론 현실적인 얘기 정치 얘기로 가면 좀 쉽지 않아지는데 책도 많이 읽으시고 진짜...
-
ㅈ같은 연대... 결국 나도 다시 사연 많은 중대 경영이 되는건가
-
[슝좍] 무빙맨 1
-
뱃지신청할때 2
어디까지 가려도 됨뇨? 이름 생년월일 이런거 가려도 되나..
-
기차지나간당 8
부지런행
-
잇올도착 3
투데이스타트
-
씨발 ㅋㅋㅋㅋㅋ 치킨양 이게 맞나
-
현재의 앞은?
-
에필로그 대용으로 국정원 쓸거면 생글-국정원 독서 이렇게 봐도됨? 0
범작가가 심찬우 채널 와서 한 설명으로는 생글하고 국일만 문학하고 같이봐랬는데...
-
너무 좋아 1
-
탱 비에고 하지마라 17
하지말라면 하지마라..
-
거리는 둘다 편도 2시간 이상 걸리니까 상관x 문과는 학벌;; 과도 상관없이...
-
대체조제 가능하게 하려는 것 같은데, 약대 입결 떡상 가나요?
-
트황상의 은혜로 2
모든 주식이 올랐네 저는 정규장 안 보고 죄다 예약으로만 거래해서 일어나서 알았음
-
1등으로 도착 ㅎㅎ
-
미리보기 방지
-
88인데 구문강의 높2-1인사람한테 좋나요? 살면서 들어본적ㅇ 없어서 후기좀여
-
기상완료.. 0
독서실 가자.. 가자마자 시발점 통통이부터
-
하루에 할껄 세우면 플레너에 있는 순서대로하나요? 아님 플레너 쓰고 그중에서 하고싶은거 먼저하나요?
-
밖에 존나어둡네 3
아 자고싶어
-
얼부기부기
-
이제 자러가야지 1
2시간 자고 일어나야되네.
-
대치동.. 1
원래 ‘수강료’라고 하면 한 달 기준인가요? 대치동 수1,2,미적 현강 다니고 있고...
-
기상 2
좋은아침입니다
-
나는 오늘 간다 8
일본에
-
배고프다 8
걍 아침을 지금 먹을까 애매한데
-
기상 4
굉장히 안좋은 꿈을 꾼거같은데 기억이안남
-
어삼쉬사 끝내고 뉴런 갈까요 아니면 기출 한 번 돌리고 뉴런할까요
-
손이 몸통이랑 같이 나가면 안되고 분리시켜서 나가고 허리는 힌지 준 상태로...
-
아사 레제 파워 누가 내 여친일까 난 다 좋은데 그냥 세다리 걸칠까.. 꼬시면 넘어올거같은데..
-
[단독]이재명 “당 지지율 떨어진 이유 밝혀라”… ‘하락세 장기화’ 위기감 4
더불어민주당 이재명 대표가 최근 여론조사에서 민주당 지지율이 하락세를 보이는 데...
-
시대 재종 반 2
언미영화생 순으로 98 92 3 85 81 인데 이정도면 대치에서 반 어느정도일까요?
-
OOO O OOO OO OOOOOOO OOO OO OOOO OOOO OO O...
-
AI랑 반도체 다루는건데이정도면 그래도 유망하지 않음? 공대는 아니던데 이정도면...
-
제 친구들이 기다리고 있어용... 같이 축하해주기로 했었단 말이에요...
-
3모 올3가보자고..
-
내가 부족한가요 1
딩신을 원한 이유로
-
생윤 만점자 출신인데 윤사 해볼까 사문 그대로 할까 4
27학년도 수능 응시 예정인데 24학년도 수능 때 생윤 9월부터 공부해서 만점 받고...
-
숙대는 0
입결이 본캠보다 에리카랑 비슷한거 맞나유? 사촌 냥대 숙대 썻다는데 에리카를 쓴건가
-
스마티 6
-
오뿌이들 잘자 2
우리 같이 꼭 껴안고 자자
-
얼버기 5
리젠무슨일..
-
사탐 추천좀 3
사탐런할거고 지구+@임 사문 생윤 동사 세지 중에 고민인디 각각 장단점좀,,,
-
Hy 견명조 아님??
-
대학커뮤니티 노크에서 선발한 홍익대 선배가 오르비에 있는 예비 홍익대생, 홍익대...
-
오늘부터 연고다 스발
첫번째 댓글의 주인공이 되어보세요.