Orbi지형T_[점수를높이는5M.Column] Ch1.등차수열'지형도를그리다'
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH1 Arithmetic sequence
Column 1: 수1 등차수열 - 중요한 기출문제 풀이 함께하기
안녕하세요! 오늘은 수학 I의 등차수열을 다루는 중요한 기출문제 풀이를 함께 살펴보려 합니다. 잠시 시간을 내어 5분 정도만 읽어보시고, 풀이 과정을 하나하나 따라가 보세요. 그러면 이 문제가 얼마나 쉽게 느껴질 수 있는지 경험하실 수 있을 거예요.
아래 풀이 내용은 제가 대치동 현강에서 직접 강의한 내용을 바탕으로, 조교님께서 꼼꼼히 정리해 주신 자료입니다. 추가로, 첨부된 파일에는 강의에서 다뤘던 개념 설명도 상세히 정리되어 있으니 참고하시면 더욱 도움이 될 거예요.
특히 이번 강의에서는 4점 문항을 효과적으로 공략하는 방법에 집중했습니다. 여러 문제를 하나의 공통된 풀이 방식(알고리즘)으로 접근했는데요, 여러분도 이 방법을 빠르게 익히시면 등차수열 문제가 훨씬 쉽고 친숙하게 느껴질 거라 믿습니다.
제가 준비한 이 자료가 여러분의 실력 향상에 조금이나마 보탬이 되길 바랍니다. 함께 천천히 익혀가며, 더 큰 자신감을 가져보세요!
(1) 등차수열의 대칭성 활용 문항
작년인 2024년 기출문제에서는 찾아볼 수 없는 유형이지만, 등차수열의 대칭성은 반드시 알아두셔야 합니다. 이 개념은 문제를 푸는 데 중요한 단서를 제공하거든요.
저는 등차수열을 일차함수로 표현해 대칭성을 조금 더 간단하게 이해하고 해결하는 풀이 방식을 사용했습니다. 이 방법은 복잡한 계산을 줄이고 문제를 훨씬 직관적으로 접근할 수 있게 도와줍니다.
천천히 따라오시면서 이 풀이 방식을 익히시면, 등차수열 문제를 푸는 자신감이 더 커지실 거예요.
[2021년 9월 평가원 문항]
[2022년 4월 교육청 문항]
(2) 특정 항의 부호를 결정해야 할 때
최근 기출문제에서는 항의 부호를 나누어 생각해야 하는, 즉 케이스를 분류해야 하는 형태의 문제가 자주 출제되고 있습니다. 이런 유형은 앞으로도 출제 가능성이 상당히 높으니, 여러분께서 특히 집중적으로 학습하셔야 할 부분입니다.
이 문항들 역시 제가 사용하는 공통된 풀이법으로 접근할 수 있습니다. 등차수열을 직선으로 표현해 각 항을 구체적으로 나타내면, 케이스를 훨씬 더 명확하고 간단하게 분류할 수 있거든요.
여러분도 이 방법을 익히신다면, 어려운 문제도 한결 쉽게 느껴지실 겁니다. 함께 차근차근 풀어가며 감을 잡아보세요!
[2024년 3월 교육청 문항]
[2022년 6월 평가원 문항]
[2023년 7월 교육청 문항]
[2024년 5월 교육청 문항]
(3) 특정 항의 값에 집중해야 할 때
이 유형은 최근 기출문제에서 자주 볼 수 있는 유형이에요. 처음에는 계산이 복잡해 보일 수도 있지만, 걱정하지 않으셔도 됩니다. 절대 어렵지 않아요!
문제에서 특정 항의 특징이 제시되어 있다면, 우리는 그 항을 기준으로 계산을 변환하는 습관을 가지는 것이 중요합니다. 이렇게 접근하면 계산이 훨씬 간단해지고 문제 해결도 수월해질 거예요.
여러분도 이 방법을 익히시면 어렵다고 느껴지는 문제도 더 자신 있게 풀 수 있을 거라 믿습니다. 함께 차근차근 익혀보아요!
[2023년 9월 평가원 문항]
[2024년 7월 교육청 문항]
(4) 다양한 등차수열의 표현
이 외에도 다양한 방식으로 표현되는 등차수열을 익히는 것이 중요합니다. 이 부분은 개념서의 등차수열 표현 Part에 잘 정리되어 있으니 참고하시면 도움이 될 거예요.
등차수열을 빠르게 인식하고, 그에 따른 공차의 의미를 빠르게 해석하는 연습이 필요합니다. 이 능력이 갖춰지면 이런 유형의 문제도 훨씬 깔끔하게 해결하실 수 있을 거예요.
참고로, 이 유형은 작년 EBS 교재에서 굉장히 자주 다뤄졌던 만큼 출제 가능성도 높으니 꼭 꼼꼼히 학습해 보세요. 여러분이 더 큰 자신감을 가질 수 있도록 저도 함께 도와드리겠습니다!
[2023년 6월 평가원]
풀이법에 대한 질문이 있으시면 언제든 댓글로 남겨주세요! 여러분의 학습에 작은 도움이라도 드릴 수 있다면 정말 기쁠 거예요.
만약 이 칼럼이 유익하셨다면 좋아요를 눌러주시고, 앞으로도 꾸준히 업데이트되는 칼럼을 보시려면 팔로우 부탁드립니다!
이번 주에는 등비수열, 수열의 합, 수학적 귀납법을 차례대로 업로드할 예정이고요,
다음 주에는 수2의 함수의 극한, 함수의 연속, 미분계수와 도함수를 다룰 계획입니다.
혹시 더 다뤄줬으면 하는 주제가 있다면 댓글로 의견을 남겨주세요. 소중한 의견 참고해서 더 알찬 내용을 준비해보겠습니다. 개인적으로 궁금한 점이 있으시면 쪽지로 문의 주셔도 언제든 환영이에요!
참고로, 오르비 인강 촬영에서도 이 내용을 정리해 깔끔하게 강의해 업로드할 예정이니 기대해 주세요.
그럼 저는 또 열정 가득한 강의하러 떠나보겠습니다! 여러분, 오늘도 화이팅입니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거 성적이랑 대학이랑 대충 맞죠.?. 그리고 적절한 목표겠죠..? 말도안되나… ㅠㅠ
-
실패하면 둘 다 고소함
-
고딩 3
그냥 느낌 뭔가 고딩?잉?앙? 으흐흐
-
명절이 좀 힘드네
-
고딩이 좋아요 8
으흐흐
-
햄북이햄북 0
함부기함경북도
-
어디서 구하지
-
사망
-
제발 살려줘. . . 진짜 인스타라도 찾아가서 뭐라고 할수도없고 진짜 하 ㅠ. . .
-
에휴이... 연필통풀까..
-
25학년도 수능 영어 33번 문항 기출분석 | 상세한 해설과 풀이 0
관심 경제 속에서 무료 서비스가 실질적으로 사용자의 관심과 데이터를 상품화한다는 점...
-
인터넷 명예훼손 보기문항과 고프먼의 사회적 연극이론임 고프먼 연극이론 딱 1문단만...
-
수학 교사경은 2
문제집이 문제를 적절히 잘 선별했는가에 따라 체감 퀄 크게 갈릴 듯 국영은 그냥...
-
수능경제질문받아요 37
조금합니다
-
코인 버는 중 0
ㅇㅇ
-
콰악 0
끌어안아버릴거얌♥
-
한 이등변 삼각형에서 밑변에 내린 직선과 만나는점에서 각각 두변에 수선의발을 내리면...
-
ㅈㄴ살벌하다 ㅋㅋ
-
나는 내가 3
빛나는 달인 줄 알앗어요
-
기억이 잘… 문학 개념어까지는 올렸었나…?
-
**토의와 토론의 차이**는 주로 목적과 진행 방식에서 나타납니다. 구체적인...
-
사문은 잘하고 있는데 생윤이 말장난이나 개념 자체가 저랑 너무 안맞는거 같아서...
-
너의모든순간 9
그게나였으면좋겠다
-
25학년도 수능 영어 32번 문항 기출분석 | 상세한 해설과 풀이 0
교육의 궁극적인 목적은 지식을 전달하는 것을 넘어 비판적 사고를 통해 정신적 해방을...
-
화작하는놈이잘못임 이정도면
-
ㅇㅈ이나 하까 16
아니 코트 너무 맘에 듬 근데 안할거임
-
교육청, 평가원에서 수학이 거의 1컷에서 놀다가(84~88) 컨디션 좋으면 92점도...
-
영어 2 안받아주는 학교라 울었어
-
알람 안 맞추고 자기 수능 전엔 진짜 이 기간만을 바라보며 견뎠는데 막상 쉬니까 또...
-
비싸다..
-
07임학교 잘 다님
-
복권 0
사볼까 될지도 모르잖아
-
(서울대 합격 / 합격자인증)(스누라이프) 서울대 25학번 단톡방을 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
체수할사람 6
https://link.chess.com/play/BYKURu
-
아니 장기 한다니깐??나 1형당뇨 괜찮다니깐??나 웬만한 성인보다...
-
현 예비고3 자퇴생이야 고3 모고 기준 국어는 1~2등급 왔다리갔다리 영어는...
-
1점씩 내려야 정상적임 아니 솔직히 2점 내려도 이상한게 아니라고 봄 뭔가 이상해...ㄹㅇ
-
뭐 물어볼지는 아작 안정했음 번호는 몇번이 적당할까?
-
흐흐흐 다그렸다 참고로 도구는 25수능 샤프입니다
-
화작틀있으면 93 없으면 94가 젤적당함 94-95는 ㅆㅂ
-
불꽃가능
-
내 mbti는 11
맞히면 1000덕
-
지균으로 간신히 서울대 끝자락학과 붙었는데 리트 도전하기엔 너무 허수인가 ㅅㅂ
-
나 너무 졸려 2
3분만 잘게
-
분러 책장 ㅇㅈ 12
특정되나요?
와아 첫 좋아요 감사합니다!!!! 잊지 않고 기억할께요오
오 감사합니다ㅎㅎㅎㅎ 더 필요하신거 있으실까요??
와 좋은 풀이네요
참고하겠습니다. 선생님 :)