[수학칼럼] 정보의 용도 파악
수학은 현장감이 의외로 큰 과목입니다
그렇기에 저는 어떠한 상황에서도 당황하지 않고 문제를 풀수 있기위한
원칙이 존재해야 한다고 생각하고 그것이
어떤 상황에 있든 정보의 용도를 가장먼저
파악하는 것입니다
일단 240613으로 적용해보도록 하죠
먼저 문제에서 주어진 정보를 정리하도록 하죠
1.BC와 CD길이
2.각BCD의 코사인 값
3.원지름의 비율
4.P1P2와 Q1Q2의 길이의 비
5.삼각형 ABD의 넓이
이제 문제를 풀기전에 먼저 계획을 해야 합니다
이는 문제에 대한 대강 틀을 잡는 걸로
각 정보들이 어떤식으로 사용될지를 예측하는 겁니다
1) 1번과 2번 정보는 변 BD에 대한 정보를 알려줍니다
2) 원에 내접하는 삼각형이라는 부분에서 3번과 4번은
각 BAD에 대한 정보를 도출해줍니다
3) 각 BAD에 대한 정보가 있다면 삼각형의 넓이(5번)를 알기에 사인 넓이 공식으로 AB와 AD에 대한 식 하나를 먼저 세울수 있을 것입니다
4) 변BD, 각BAD를 알기에 BD, AB, AD에 대한 코사인 법칙으로AB, AD에 대한 식을 추가로 세울수 있습니다
우리가 알고자 하는것은 AB,AD 식 개수는 2개
식개수=미지수 개수 이기에 1) - 4) 까지의 계산만
해주시면 되기에 나머지는 그냥 계산만 해주시면 됩니다
251127입니다
이 발문에서 정보는 총 3가지가 있습니다
1.접선이 x축인것으로 g(×)에 대한 정보 2가지
2.역함수를 지니는 점에서 정보 1가지
이 정보들의 용도는 명확합니다
오직 f(x)를 확정시키는 용도입니다
f(x)의 최고차항에 대한 정보를 주었기에
f(x)에 남은 미지수는 3가지
식개수=미지수개수
나머지는 계산만 하면 됩니다
250629입니다
구해야 하는 미지수는 3개
a,b,c
하지만 바로 보이는 정보는 없습니다
정보가 보이지않다면 찾아내야죠
g(x)가 실수전체에서 미분가능하답니다
일단 f(x)를 미분해보죠
미분하니 증가함수, 0과 1에서만 변곡점을 지닙니다
근데 g(x)는 x<b일 때 -f(x-c)가 됩니다
미분가능성을 생각해보죠
미분가능: 도함수연속, 원함수연속
원함수가 연속가능하다는 정보는 a값 특정이 목적입니다
b값과 c값은 도함수 연속조건을 통해 특정해야합니다
우리는 f(x)가 항상 증가, 변곡점은 0과1이라는
정보를 알고 있습니다
f(x)가 항상증가 한다는 정보는
f'(x)=-f'(x-c)를 만족하는 f'(x)값이 0임을 알려줍니다
이를 알아내면 b=c=1는 쉽게 나옵니다
이후 원함수 연속조건으로 a값만 계산하시면 됩니다
이렇듯 모든 문제에서 정보는
확실한 목적을 지니고 있습니다
또한 세번째 문제처럼 그것이 직접적으로 제시된것이
아닐수도 있습니다
하지만 만약 정보를 알게된다면
그정보의 목적이 무엇인지 부터 알아내야 합니다
그이후는 확신을 가지고 계산을 하면 됩니다
이상입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
뭐라는거냐
-
24수능 본 사람이고 이번에 26수능 다시 볼 예정입니다 공대/자연대 계열로...
-
ㅇㅅㅇ
-
혼자 타이레놀사러 편의점가는중.
-
500등 후반까진 넉넉히 붙나요? 다군 위에 뭐 많이 생겨서 불안한데.. 6칸떨이...
-
벡터 슬슬 쉽지 않아지는중.. 스블 확통 개강까진 해봐야겠다
-
친구가 어디가야되냐고 물어보는데 어디가 나은가요 친구 집이 용산구라 외대가 조금 더 가깝긴 할듯
-
하루에 200명씩 들어오네ㅋㅋㅋㅋㅋ매일보다가 멘탈 다털림 딱 750인데 실제로도 컷 걸칠거같은 느낌
-
내일부턴 진짜로 갓생 살거임
-
무물보 10
심심해서 한번 해볼게요
-
원장연 유래 6
ㅇㅇ
-
흠..
-
폭이 지원자수가 예상보다 몰리면서 경쟁률 높아지는거에요..?
-
징집병 모집 언제인지 아시는 분 계신가요
-
군대안가는법 7
의대에 가면 됨
-
주변에 170안넘는 애들이 없어서 모르겠네
-
전역하면 됨
-
저 188 132인데 대학에서 인기 많을까요ㅠㅠ? 16
순서대로 kg, cm에요 퓨ㅠㅠ
-
저를 최소 2019년 이전부터 오랫동안 전쟁사와 역사, 밀리터리에 대해서 이야기를...
-
아우우...
-
연세대 있나여?
-
벡터 하다가 머리 다뽑힐거 같아서 벡터만 버티면 될줄 알았는데 공간도형 오니까...
-
원과목 안했고 나보다 대학 높게 갈 예정인 자만 돌을 던지셈 수시는 나가있어
-
1월 공통 복습하고 2월부터 확통이랑 같이 하려는데 괜찬ㅇㅎ나요?
-
안그래도 돈도없는데
-
ㅈㄱㄴ
-
할코디언 1
ㅇㄴ 그거 뭔데 ㅎㅋㅅ 변형이라고 나무위키에 있는거냐 개끔찍할거같은데 본사람있음??
-
여붕이구한다 ㅇㅇ
-
망했다 4
2년 된 버즈 잃어버림
-
원장연 원장연하는거 ㅈㄴ 긁히네
-
외대 어문 소수과 10
내가 쓴 과만 폭인 것 같네....... 다른 데 넣었음 최초합인데 허허 추합이라도...
-
과탐이 재밌음... 표본이 고여도 잘하면 그만
-
중시경건 3
마음이 따뜻해지고 경건해지는 참 좋은 말이다
-
해볼까 Yoon's 가르칠순 있는데 가르쳐도 되나?
-
1과목 실수들(원장연이라는 나쁜말은 ㄴㄴㄴ) 다 투로 가거나 사탐런치는게 지금...
-
1. ∃원인∀결과(원인→결과) : "모든 결과를 일으키는 어떤 원인이 존재한다."...
-
잇올 6시 오픈하자마자 1등으로 입실하던 시기와 무단지각으로 벌점 60점 쌓은...
-
ㅈㄱㄴ
-
나도 과외 구하고 십다 28
시급 만원에 할 수 잇구요 신촌 쪽에서 30분거리에 허수친구면 좋구요 제가 오르비...
-
문명6 1
오랜만에 해볼까
-
"사회복지학과 지망생" 사복과 출신 반수생: STAY...
-
뜌따이 되는거같노 .....
-
네
-
햄버거는 아직 무리인가봐요
-
여붕이내놔 7
여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔 여붕이내놔...
-
이정도 표본유입으로도 이렇게 정상화시켰는데 분위기,기본인원수보면 유입량 최소n배증간데과연,
-
난 오르비하려고 수면 시간 줄이긴 함
-
수능 컨설팅 받을려면 어디 학원가서 받는게 제일 좋을까? 1
나름 유명한 큰데 기준으로 말하는거 ㅇㅇ 자기 자신의 위치, 앞으로의 전망, 발전...
닉네임부터 바꾸셈
선ㄱㅐ추ㅋㅋ
당신뭐야
흠 만족스렂군
너누구야
계정 해킹당함?
님?
맞말
경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이! 경기부엉이!
ㅏ랑햐요
그건 좀...
존나멋있다ㄹㅇ
그냥 고능부엉이가 맞다
대고능부엉
고능아네 ㄱㅁ
와 고트부엉이
고능부엉이 ㄹㅈㄷㄱㅁㅊㄷ
간단하지만 정말 알찬 칼럼이네요. 따봉
와 뭐고 이게
일단 스크랩