수학2 문제 질문 있습니다..!(답변 간절히 부탁드립니다ㅠㅠ)
과외 학생 문제 풀어주다가 도무지 어떻게 푸는 건지 모르겠어서(..) 여기에라도 여쭙니다! 두 문제가 있는데 각각 질문점에 대해 제가 잘못 생각한 것이 있거나 다른 풀이 방법이 있다면 설명 부탁드리겠습니다.
1.
이 문제는 다음과 같이 원을 구한 뒤, P의 임의의 x좌표를 a로 잡고(a leq 10) S(a)를 구하여 삼차함수 또는 사차함수 꼴의 최댓값을 미분을 이용해 구하려고 했는데요, 문제는 P의 x좌표를 a로 잡는 순간 Q의 x좌표가 말도 안 되게 복잡해져서 S(a)를 도무지 쓸 수조차 없을 정도로 계산이 이상해집니다. 수학2까지 범위 안에서 이걸 어떻게 접근해야 계산의 문제 없이 풀어낼 수 있을지 잘 모르겠습니다ㅜ
2.
이 문제도 기출로 많이 나온 형태여서 그냥 쉽게 풀리겠지 생각하다가 답이 안 보였습니다. 우선 t geq 4에서 항상 y=t와 두 점에서 만나는데, f(x)는 양의 무한대로 발산하므로 한 점에서 만나고, 따라서 유리함수가 x->2-에서 양의 무한대로 발산해야 한다는 것을 파악한 후 점근선의 위치를 확정하려 했습니다. 그런데 점근선을 어떻게 잡더라도 t가 해당 조건을 만족할 수 없는 것처럼 보입니다. 등호가 어딘가에 빠져야 말이 될 것 같은데, 저 상황을 만들어낼 수가 없는 것 같습니다.
간단하게라도 가이드 해주시면 다시 한번 잘 풀어보겠습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
빵야
-
둘 다 달렷습니다 필요에 따라 번갈아가며 씁니다
-
진학사 버그 3
저만 계속 합격예측 볼 때마다 새로고침 되나요? 뭐 보려고 해도 새로고침 돼서 보질 못하네요
-
메이저 외고라 진짜 수시러들 서연고 ㅈㄴ가는데 나도 1학년땐 수시 챙겼으니까 외고...
-
다군 투표 부탁 12
건대 미컴 7칸 외대 자전 7칸 이대 인공지능 5칸 중대 경영 3칸 댓글 좋아요좀
-
소주 주량 투표 6
보통 대학생 평균이 어느정도인가요?
-
그 시절 파랑테 하이샵
-
나 힐끗처다보는거 설렘
-
룩삼님은 웃을 때 먼가 ㄹㅇ 행복하게 웃는거 같아서 2
보기좋음
-
뱃지 시차로바꿈 0
어때
-
내신때마다 쎈 3회독씩 했고 수능에 더 적합?한거 골라주세욤
-
실속 없는 삶이 지속되고 있어요 한심한거 아는데 이젠 어떻게 할지도 모르겠어요 난...
-
왜 딱 ‘3타‘ 인지 알수있었음 잘 가르치고 재미있고 좋음 아주 맘에 듬 근데...
-
귀여운거 6
-
사람이 어떻게 이렇게 문과인가 싶음
-
또깻어...
-
이대 추합 일정 0
[충원합격자 발표 일정] 2024. 12. 26.(목) 18:00까지 라고 써있는데...
-
ㅈ같다 그래 현역이 정시로 대학 갈 생각 하는거 아니지
-
진짜 적어도 수학백분위 98은찍어야되겠죠?
-
좋아죽는사람이 생기진않을거같아
-
혹시 빠지시는 분 안계실까요… 정말 너무무무무무ㅜㅁ 간절해요..ㅠ
-
재수할 예정임?
-
해리포터 젤리빈 2
ㅋㅋㅋㅇ 우히히 낄낄
-
욕같아서 이건 못 보여드릴 듯 ㅈㅅ,,
-
왼쪽이 24수능 오른쪽이 25수능
-
컨텐츠 개많이 나오고 뭐 수학강사 3명 이러니까 뭔가 내 공부에 중심을 못잡고...
-
230601 옯생 첫 황금왕관 받고 신기해서 찍어놓은것
-
이모랑 재수 때문에 얘기하다가 서울 대치동 애들은 2~3시간 자고 공부한다느니...
-
손가락 길이 인증 18
어때요
-
재수해서 수리논술로 이화여대 붙었어요 ㅠㅠ 고3 재수 오르비에서 도움 정말 많이...
-
다들 어디갔어요
-
ㅈㅂ안보임요
-
텔그랑 차이가 좀 많이 나는 것 같은데 텔그가 짠건지 진학사가 후한건지..
-
진짜 ㅈㄴ 웃기네 니황 그냥 감다살 그 자체다
-
24수능 25 6모 25 수능 공부 스카// 2~3월: 하루 6~8시간 잇올//...
-
햇빛때문임 개소리같? 인간이 재수학원 박혀서 일년간 낮에 햇빛쬐는 시간이...
-
존맛탱 개부드러움
-
인서타재미없네 9
다들 추운 곳에서 방어에 소주마심 아니면 셤기간이거나
-
그래도재수하는거보다야낫겠지라고생각해요
-
낼 열시 알반데 1
지금케이크먹어도됨?? 개쌈뽕한 딸기타르트가 냉장고에서 날 기다리는중임
-
낙지 칸수 한두 칸 왔다갔다하는 걸로 하루치 기분이 결정되네ㅋㅋㅋ
-
ㅈㄱㄴ
-
대구교대나 스나이핑해볼까요 붙으면 오르비 뱃지나 받죠 뭐 대구에서 잇올재수할거기도 학ㅗ
-
백상아리 -> 청상아리 급 너프
-
자 다같이 지정좌석제라는 신나는 제도를 즐겨보아요 ^~^
-
농어촌 라인 1
국어 86 폭망(화작) 수학 93 (미적) 영어 3 사문 89 지1 100 논술 다...
-
만들어먹는게 더싼데 유부초밥 다 만들면 비빔면 끓이기 귀찮아서 맨날 유부초밥만 먹음
-
여캐일러 투척 4
1번 신발끈 쓰면 안되려나요..? 눈으로 슬쩍 본 거라 확실친 않지만 가능해 보이네요
일단 P의 y좌표가 복잡해서 Q 좌표도 엉망이라.. 그냥 곱으로만 연결해도 계산이 비슷하게 어렵긴 한 것 같아요 ㅠㅠ
1번은 x^2 +y^2 =25와 접점 (5,0)으로 생각해서 계산 줄이면 좋을 거 같아요
네 시도해보겠습니다!
P좌표도 (5cost, 5sint)로 잡으면 더 편할듯 합니다
치환으로 최대최소 구하려고 했는데 저렇게 나와버리네요.. 어떻게 해야 될까요 ㅠ^ㅠ
직선도 x=5로 단순화하세요
2번은 점근선을 4로 잡고 f(x)가 y=-28, y=4일때 접하고 f(2)=3이라고 하면 될 것 같아요!
f(2)=-3 말씀해주신 것 맞죠? 되는 것 같아요! 정말 감사합니다 :D
첫번째 문제에서는 r=30이 적절한 상황 같네요. r=5이면 넓이의 값이 너무 작게 나옵니다.
시점을 돌려서 직선 l을 y축에 평행하게 바라보면 좌표가 깔끔하게 나와서 사차함수의 최대로 풀리네요.