논리학 이야기
명제 "P이면 Q이다" 에서 전건 P가 그 자체로 거짓이라면 전체 명제는 항상 참이 됩니다. 수학적으로 생각해보면 모든 집합은 공집합을 부분집합으로 가지기 때문이라고 할 수 있고, 더 쉽게 생각해보면 다음과 같이 직관적으로 설명할 수 있습니다. (수학을 이용한 공집합 논리 역시 논증을 하려면 아래의 공허한 참 논리가 필요합니다.)
선생님께서 "다음 시간까지 숙제를 해 오지 않으면 혼을 내겠다." 라고 하셨는데, 그 말을 들은 철수는 다음 시간까지 숙제를 해 갔으나 숙제를 했음에도 혼이 났다. 철수는 본인이 숙제를 했는데 왜 혼을 내느냐고 항의했으나, 선생님은 이에 다음과 같이 답했다. "숙제를 하지 않으면 혼을 내겠다고 했지, 숙제를 하면 혼을 내지 않겠다고 하지 않았다. 따라서 나는 거짓말을 하지 않았다."
이 예시와 같은 자연어적 표현에서는 인과관계가 들어있지만, 인과관계를 배제하고 단순 진리함수적 관계만을 살펴본다면 선생님은 숙제를 해 오는 경우에 대해서는 아무 말을 한 적이 없기 때문에 숙제를 해 오는 경우 혼을 내든 내지 않든 거짓말을 했다고 볼 수가 없는 것입니다. 즉, 거짓을 가능성 자체가 사라진 상황에서 반드시 참 또는 거짓 둘 중 하나여야 하므로 참으로 간주할 수 있다는 것이죠.
노
이를 공허한 참(공허한 진리)라고 부르는데, P가 항상 거짓이므로 P가 참인 경우가 존재하지 않기에 P가 참인 모든 경우에 Q가 참이 된다고 할 수 있는 허무한 경우입니다.
중요한건 이 공허한 참 이야기가 아니라, 문장 연결사의 진리함수적 사용에 대한 이야기입니다. 진리함수적 사용이란, 단순히 말하면 자연어적 문장 논리가 논리적으로 잘 정의된다는 것입니다.
예를 들어, "그들은 결혼을 했다. 그리고 아이를 낳았다." 를 문장 문자를 이용하여 표현하면 P : "그들은 결혼을 했다.", Q : "그들은 아이를 낳았다." 에 대하여 P and Q (P & Q)가 될 것입니다. 하지만 순서가 반대가 된 "그들은 아이를 낳았다. 그리고 결혼을 했다." 는 의미가 완전히 다르죠 (속도위반). 이렇듯 "그리고" 라는 자연어는 &로 해석이 되며 자연어적 서술이 가지는 뉘앙스를 문장 연결사에 모두 담을 수가 없기 때문에 이러한 문제가 생깁니다. 이 경우 P & Q와 Q & P는 자명하게 동치임에도 불구하고 둘 중 하나만 참이게 되어, 오직 P와 Q의 진리값에 의해서만 전체 명제의 진리값이 결정되지 않는 상황이 발생하여 문장 연결사가 진리함수적으로 사용되지 않은 경우가 됩니다.
또 다른 재밌는 예시는 역설의 일종으로, 마찬가지로 문장 연결사가 진리함수적으로 사용되지 않은 예시입니다.
"만약 이 나무 막대가 금속으로 만들어져 있다면, 열을 가했을 때 수축할 것이다."
이 문장 자체는 직관적으로 생각했을 때 거짓입니다. 금속이었으면 (그리고 굳이 금속이 아니더라도) 당연히 열팽창을 하겠죠. 하지만 이 "나무 막대"는 금속이 아니기 때문에 전건이 거짓이 되어 공허한 참에 의해 전체 명제는 참이 됩니다. 따라서 이 경우 이 문장 전체를 하나의 문장 문자로 생각해야 합니다.
더 직접적인 예시로 다음과 같은 예시도 있을 것입니다.
"만약 내가 로또에 당첨되었더라면, 나는 로또에 당첨되지 않았을 것이다."
직관적으로 생각해보면 당연히 말이 안 되는 거짓인 문장입니다. 하지만 저는 로또에 당첨되지 않았기에 전건이 거짓이 되어 문장이 참이 되어버리죠. 이 경우 전체 문장은 참일까요? 거짓일까요?
* 비전공자가 논리학 수업을 듣고 간단하게 작성한 내용이라 틀린 내용이 있을 수 있습니다. 재미로만 읽어주시길
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
심신 안정을 위해 더 불안하려나,,,
-
시중 나와있는것중 가장 어려운거 뭔가요 촤근에 김승리 모고 상상 5-9,10 이감...
-
난이도 예측 특 0
그럴싸해 보이지만 따져보면 맞는 말이 하나도 없는 근거들로 본인들 희망사항을 적어놓음
-
으 똥덕대
-
차라리 행정소송? 하는게 ... 하고있나??
-
작년 수능쯤에 샀었는데 수명 1년은 되겠지??
-
저능아라 개노가다말고 생각나는게 없는데
-
오늘 그동안 푼 모고 버리면서 기분이 이상함.. 뭔가뭔가임
-
남자들 오면 좋잖아
-
모든학교 에타가 4
시끄러운건가
-
얼버기 10
잘잤다
-
현재 군대에서 수능을 준비하려고 합니다. 26학년도 수능을 볼 계획이고 현재...
-
중요한 거 날라가면 본인들이 책임질 것도 아니면서 전선 뽑아버리고 싶다 ㅇㅈㄹ.....
-
시간 참 빠르네
-
투데이 500은 뭐죠
-
제 아이디 입력해주시면 추천해주신 분과 제게 모두 만원권이 증정된다고 합니당 아이디...
-
취업박람회를 거의 백룸으로 만들어놨네...
-
올해 6모 28번 같은것만 내주면 안되나.. 6모 30은 뭔가 자신이 없네
-
ㅈㄱㄴ 꼭 해야한다면.?
-
11문제푸는데 1시간걸리네 개어렵다
-
파이팅!
-
형사 피의자가 영장 실질 심사 시 국선변호인 쓸 때도 1
사선 변호인이 선임 안되었을 때 법원이 무조건 국선 변호인을 선임해 주어야 하나요?...
-
수학 수완실모만 깨작댐 국어영어탐구 사지도 않음 탐구 수완실모 오늘 날잡고 푸는 건 어케생각함
-
벽돌 왜던진거임? 문 열줄 모르나? 아님 잠김?
-
남자출입금지였다는데 그 뒤에 배달기사만 예외적으로 출입허용했었다네요 이유는...
-
한번호로 찍는거랑 문제마다 다르게 찍는 것중 뭐가 나을까요?
-
화작 ^^ 이럴줄알았으면 다른거 풀었음ㅋㅋㅋ 그냥 쉬운거풀고 멘탈관리할걸
-
저는 지적학과를 희망하는 학생인데 일단 청주대는 떨어졌고... 목포대는 우주상향으로...
-
경제: 법보다 재밌음 (근데 못함) 서양철학: 동양철학보다 오조오억배 나음...
-
저는 그동안 33 34 버렸는데 올해는 37 39 버리고 있어요
-
내가 하고 싶은거 하고 살고 싶다
-
Bic라이터로 준비해야하나
-
에타에 영상 몇개 올라와서 보고왔는데 아무 상관도 없는 교수님한테 욕하고...
-
ㄹㅇㄱㄲ
-
오르비특) 10
아무도 관심을 안주면 저런새3끼들도 원하는 반응이 안오니까 적당히 치고 넘어갈텐데...
-
고전소설남장여자 2
VS 보추 성별 모티프는 지금도 이어지네요...
-
12까지 인가요???
-
눈풀안되면걍제끼고
-
뭘 요구하면서 하는거에요..? 학교측에서도 그냥 비전 회의 중 나온 의견들 중...
-
수학 마지막공부 0
어떻게 해야할지 모르겠네 어제까진 실모 풀었는데 오늘 내일은 뭘 해야될까요? 기출?...
-
처음들어봄
-
7회차 거의 다풀어본 결과 78~83 뜨는데 수능2가능할까요ㅜ개어려운디
-
교수님은 공정성 추구와 이기주의를 구분 못하시나요? 전직 대통령에 의해 만들어진...
-
영어 찍특 질문 1
영어 보면은 다들 찍특 많이 보던데, 내가 푼거중에 한 번호가 유독 없으면 그걸로...
-
ㄹㅇ
-
이모다 첨부파일 0
낼 하나 풀건데 이모다 첨부파일 실모 중에서 하나 뽑아 풀건데 젤 어려운 게 몇회차...
-
진짜 딱 수능이 맵게 나오면 이정도일거같네요 문제 너무 좋았고 솔직히 여타 대기업...
-
수능장 텀블러 1
유대종 쌤 종강 선물로 텀블러 받고 잘 쓰고 있어서 들고 가려고 하는데 들고 가도...
-
늙어서 몸이 그걸 구현을 못함
그런 명제를 사소하게 타당하다고 하죠 ㅎㅎ