9모 미적 30번 현우진 풀이 이해가 안됨 도와줄 사람
해설보면 F(x)=F(0)+적분x~0 까지 f(x) dx
로 정의하고 조건을 해석함.
그 후 h(x)라는 함수를 f(x)-적분x~0 까지 f(x) dx 로 정의하고
F(0)>=h(x)로 두고 풀이하는데
문제 푸는 과정은 다 이해했음.
근데 h(x)를 정의하는 이유가 이해가 안되는데
조건이 F(x)>=f(x)로 주어졌는데 그냥 바로 F(x) 극솟값이랑 f(x) 극댓값으로 비교하고 처리하면 되는거아님?
h(x)로 정의하면 아예 함수가 달라지는데,
위 방식으로 하면 답이 안나오긴함. 즉, 내 방법이 틀렸다는건데 현우진 방식으로 풀어야하는 이유를 모르겠음
9모 해설 영상은 따로 QnA도 없는것 같아서 여기 질문함.
알려줄 고수 구함.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잘자요 3
좋은 꿈꾸세요
-
획득비 약수 텔그 고속 기준으로 몇 되는것 같은데 이게 될 성적인가요….?
-
20수능 가형 96점받기 vs 25 미적 92점받기 8
뭐가 더 어렵다고 생각하시나요 예를들어 4등급수준에서 시작하는 학생 a가 있다고...
-
마지막 검은색후드분 때문에 미치겠네ㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
저는 카페가서 음료 50퍼 할인 받고 CGV가서 영화티켓이랑 콤보 50퍼 할인 받고...
-
Stu stu 3
-
에휴이
-
하... 너무 고통스러움 내신 벼락치기하느라 웹툰이랑 애니랑 만화랑 다 못봄ㅠㅠ
-
ㅋㅋㅋ
-
어느새20번째 솔크를맞이하며...
-
저한테 질문하시면 알바하면서 배운 꿀팁 많이 알려드림 할인 제일 많이 받는거나 사람...
-
커리 좀 짜야겠다
-
상황 진짜 복잡하네요.. 재학생들 사이에서 마피아게임하는것도 아니고 치열한 두뇌싸움 벌어지는중
-
혹시 정시 기회균형전형에 대해 잘 아시는분이 있을까요? 있으시다면 쪽지로 대화...
-
뇽안 옆 동네에서 광대짓하는 김쌍온이라고 합니다 자격증 공부하다가 .. 할 짓도...
-
확실히 유튜브 사용시간 엄청 줄음
-
아또흔들리게하네.. 강기분은 25년꺼 한 번 했었어요 파이널은 김승리쌤이 좋대서ㅜ...
-
늘어난 두통과 싸우고
-
왜 투데이 350?
-
정확히는 작년에 왕복 2시간반 거리의 학원을 다니면서 4
폭식을 하기 시작했고 건강도 망가지면서 정신이 어딘가 얼빠진듯이 되었다는 거임...
-
잘까말까잘까말까 11
내일이 기말이지만 수학달린다!!
-
외롭다 1
입학전까지 만나서 놀려다닐 여사친이 없어서 외롭다
-
땅따먹기
-
과제하기싫다 5
으으
-
흑
-
아가취침 8
모두 굿밤
-
서성한부턴 따로 준비해야될 정도로 빡센가
-
되고싶다고되는건아니지만 갑자기문득..옛꿈이떠오름.. 확통사탐으대가능한가.. 하아..
-
어그로 ㅈㅅ 이해원 사려고하는데 올해버전 언제나오나요
-
무물 5
ㄱㄱ
-
주몽 드라마 보고 태왕사신기 인기 많고 개콘에서 마빡이하고 사람들 원더걸스 텔미 UCC 찍고
-
벽이 너무 늘어났어요 ㅠㅠㅠ
-
https://orbi.kr/00070147615 심멘
-
'커리큘럼 평가해 주세요.' 라는 느낌의 글을 싸는 사람들의 심리가 무엇일까요?...
-
그냥 좌석 선택 확인만 누르면 그거대로 선착순 반영되고 그때 카드번호 쳐도 되는 거임?
-
ㅅㅂ 5
왜나는
-
1월달쯤에 수1 수2 25뉴런 완강할거같은데 26을 또해야할까요 ㅠㅠ 안할려햇는데...
-
실채 나오면 더 많아지려나
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 5
논리싫증주의자는 관심이 없다
-
존잘 옯붕이 연애한대 요새 안 들어오더라....넌 진짜 믿었는데
-
대충 힙찔이와 팝송과 인싸픽과 십덕을 버무린
-
현우진 쌤 OT 보니깐 마렵네 재밌겠다
-
ai전에서 10명중에 내가 젤 못하는거 보고 접음
-
수능 성적표가 아직 나오지 않은 이른 시기이지만 수능 풀면서 한 문제를 안풀더라도...
-
침잘놓을거같은데
-
전역 하셨으려나
이럴 수도 있는데 극대랑 극소랑 비교하면 안 되죠
222 이거 교과서랑 쎈에서도 다룸
곡선 2개보단 1개가 편하니깐...
곡선 두개를 비교하려면 볼록성까지 고려해야함
F-f와 x축 사이의 대소관계는 극점 점근선만 고려하면 됨
아 이해했음
함수끼리 비교보다
상수랑 함수비교가 쉽네
극대 극소 비교는 내가 말을 잘못쓴거같음
다들 ㄱㅅㄱㅅ 공부 더 해야겠네
곡선 두개를 비교할때는 곡선의 오목과 볼록까지 고려해서 문제를 풀어야한다는 번거로움이 있죠
못 푸는건 아닌데 잘 알고있는 곡선 (삼차함수)같은걸 제외하면 곡선두개로 기하적 해석을 하는게 좀 번거로움
식을 이쁘게 조작해서 곡선과 직선의 비교로 바꿔주면 곡선의 오목볼록까지 엄밀하게 고려 할 필요가없고 함수의 증감점근선 정도만 조사해주면 풀 수있음
딱 이 포인트에서 헤맸음
ㄱㅅㄱㅅ 정진하겠음