미분가능과 도함수연속성
일단 결론은 미분가능≠도함수연속 입니다
이 내용을 현행교육과정내에서 간단히 풀어내보겠습니다
미분가능하다의 정의는
1. 연속
2. 모든 실수 a에 대하여 가 존재(좌미분계수=우미분계수를 내포하는 내용)
사실 수능문제들에서 미분가능성을 따질때 정석적으로는 2번의 정의로 다 풀수있으나 실전성을 위해 첨점과 같은 내용으로 한눈에 파악하기도하죠
도함수가 연속이다의 정의는 그냥 일반적인 연속의정의인
를 확인해주면 됩니다
결국 도함수가 연속이면 미분가능함의 2번조건을 자동적으로 만족해줍니다
그럼 1번조건인 연속하다라는 어떻게할까요?
도함수의 정의자체가 원함수의 각 지점의 미분계수를 뜻하는것이기에 도함수가 연속이면 당연히 원함수도 연속입니다
(원함수가 불연속이면 도함수의 정의상 원함수가 불연속인 지점에서 정의되지않기때문에 도함수는 불연속이됩니다)
그러므로 도함수가 연속이면 미분가능합니다
하지만 첫 줄에서 말했듯
미분이 가능하다고 도함수가 연속인것은 아닙니다
미분가능해도 도함수가 불연속일 수 있다는거죠
왜 우리의 직관과는 달라보이는 이런일이 발생한걸까요?
그 이유는
일수도 있기 때문입니다
분명 미분계수의정의로든 로피탈로든 둘이 같다 생각해왔었는데 실은 다른경우도 있다는거죠
f(x)가 미분가능하다고 전제한다면 저 두식의 좌항은 서로 같겠지만 좌항과 우항이 다른경우가 있을수도 있어서 미분가능이 도함수의연속을 보장해주지 않습니다
그 예시는 밑에 보여드리겠습니다
다만 이런 경우는 적어도 구간별로 다르게 정의됐을때와 같은경우에나 발생하지 일반적인 미분가능한함수에서는 저 위에 두식에서 좌항과 우항이 같음이 성립하니 문제푸실때 이런경우를 너무 과도하게 생각하실필요는 없습니다
미분이 가능하지만 도함수는 불연속인 대표적인 예시이자 기출입니다
미분계수의 정의를 이용하면
이므로 미분이 가능함을 알 수 있습니다
하지만 이때 미분법을 이용해 도함수를 구해주면
이를 실제로 그려보면 도함수가 x=0 근방에서 미친듯이 진동하는것을 확인할수있습니다
결국
임을 확인할수있기에 미분이 가능해도 도함수는 연속이아닙니다
매번 주기적으로 불타는 주제이기에 한번 정리해보았습니다
사실 수능문제에서 그렇게 크리티컬하게 다뤄지는 내용도 아니고 교육과정내에서 완벽하게 증명이 된다고는 볼 수는 없긴합니다
도움이돼셨다면 좋아요를....!!
0 XDK (+5,100)
-
5,000
-
100
-
. 그 시간에 애니 한 편보는게 낫지 않음?
-
인생 고민 1
안녕하세요 수능을 12일 앞두고 있는 재수생입니다. 제가 재수를 하면서 10개월동안...
-
합격찹쌀떡 피날레 모의고사(한대산 T)...
-
사만다? 3
사문 실모 중에 사만다가 유명하던데 사만다는 어디서 나온 모고인가요.? 잘몰라서..
-
문학 싫어 5
난 문학이 너무 싫다 난 문학이 너무 싫다 난 문학이 너무 싫다 난 문학이 너무...
-
국어 86 수학 82(1번틀림 씨발 뭐하는 새낀지) 나머지 14,15,21,30...
-
이번 겨울방학 국어 영어 수학 단과 제발!! 추천좀 해주세요 10모 국어 높2 영어...
-
https://orbi.kr/00069586976/ 난 좀 더 생산적으로 살았겠지
-
그럼 수능 전까지 1일1실모??
-
커피 너무 비싸 2
레쓰비가 훨씬 낫다 아니면 믹스커피 ㅇㅇ
-
한입해 -> 민초한입해 -> 민초한입 이렇게 마음가는대로 바꾼건데
-
ㅇㅇ...
-
수능 화학임
-
순수어려움은 남녀임금이고 실수하기 쉬운건 노부유총인듯 계층이동은 잘 나오지도 않고...
-
한남 컨텐츠 한녀 컨텐츠 가리지 않고 다 즐김 진짜 어떤 채널 보는지 리스트 알면 헛웃음 나올듯ㅋㅋ
-
수능끝나면 1
9시 ~17시 만화방
-
눈앞이 캄캄해진다
-
옛날 라스가 1
존나 재밌네 ㅋㅋㅋㅋㅋㅋ 지금이랑은 비교가 안되네 ㅋㅋㅋㅋㅋ
-
개굴이 6
-
평가원서 걍 눈만 있으면 풀수잇게 내는데 왜 실모들은 g랄을 하는거임 걍 20번급...
-
자동으로 교정해 줘서 손으로 쓸 일 생기면 관사 자꾸 빼 먹음 ㅋㅋㅋㅋ
-
수능은 광기다 4
65분 주고 인문 사회 과학 관련 내용을 이해하고 소설 두 개의 맥락을 이해하며 시...
-
알던 오뿌이들 많이 있으면 남아야겠다
-
농구를 자주 하는 것도 아니라서 그런지
-
대체로 미적 번호별 난이도가 28<29<30 인가요?
-
영어 등급 0
영어 모의고사 치면 2~3등급 왔다갔다하는데 어떻게 고정시키나요ㅠㅠ뭔가 막연하게...
-
이감 6-6 화학 계면 활성제 지문 같은 건 대체 어떻게 풀어야 하나요?? 진짜...
-
기숙학원가면 4
진짜 공부밖에 안하나요??? 폰도 낸다던데 대부분 다 공부만 하나요??
-
이감 중요도 2
이감 중요도에서 c에도 없는 작품들은 그냥 걸러도 되나요?? C에도 없는거면 출제...
-
나도 오래 했네 0
정 존나 들었다 오르비 이제 관성임 ㅇㅇ.....
-
해군 항공 5
지금 출결 -4인데 항무통 따면 가능할까요?
-
한의사 관련 소신발언 10
같은 건 하면 안 된다고 생각해요...
-
교재만 사서 컷을 알 수가 없음… 9모 46 10모 50인데 이거 30후반까지도 떨어지는게 맞나
-
커리 봐주셈 0
군수 준비할려고하는데 국어:정석민 수학:정병호 영어:띵학 탐구:임정환 작수 기준...
-
슬슬 영어해야겠는데
-
하고 국어 과탐 몰빵이 맞는 판단?
-
난이도 어떤 편인가요?? 모의고사 왠만해서는 안정적으로 1등급 나오고 강k도 1등급...
-
다큐 3일 1
-
양치부터하면 청결한거 좋아하고 몸부터 씻으면 외모에 관심많고 머리부터감으면 배려심이...
-
잘 시간이 지나서 그런가 십덕력이 뿜뿜하네
-
언제까지고 머물고 있을수만은 없겠지...
-
궁금하네
-
전 귀찮아서 50분 잡고 듣기 빼고 품
-
이제는 언급조차 없구나.
-
질문해주세요 20
선넘는것도 상관없어요
-
정답: 둘 다 끊고 환급받기
-
순수 대학생의 신분으로만 있는 건 올해가 마지막이겠구나
-
그런데 그 파도를 꾸역꾸역 버텨내는 몇몇 오르비언들이 존재한다고 한다
-
작수때는 어땠는지 모르지만 오르비가 많이 변하긴 하겠지... 너무 정들어버렸네...
-
생명과학 공부법 0
생명과학이 너무 어려운 과목이라고 생각이 듭니다 특히 킬러와 비킬러의 난이도 차이가...
서로다르다는 기호를 어케쓰는지를 몰라서 ㅋㅋ...
양해부탁드립니당
도함수가 연속이면 미분가능 o
미분가능이면 도함수연속 x(반례) 이군요
반례가 어케되죠
도함수의 함숫값만 존재하면 되는거아님? 도함수의 극한값과는 관계없이 어차피 f'(a)라는 값만 보는거니까
감사합니다....안 그래도 제가 헛소릴 해서....깔끔하게 정리해주셨네요
도함수가 연속이면 미분가능이지만 그 역은 성립이 안 된다는 걸로 한 줄 정리가 되네요
!= 입니다
헛 감사합니다
호훈이 맨날 강조하는 거네
저도 이거 배웠는데 반례가 현행 교육과정에서는 힘들고 가형 30번에나 나올거같은 기괴한 함수여서 별로 상관 없는거같던데
저함수근데 교과서에 있음 ㅋㅋㅋ
수2범위 내에선 그냥 동치 맞죠?
ㅇ예
김기현 들으면 저거까지 다 증명 및 소개까지 다 해줌 아 ㅋㅋ
확통 선택자인데
역은 성립하지 않는다고 기억해두면 될까요?
유용한 글 감사합니다
도함수가 연속이면 미분가능하다
역은 성립하지않는다
도함수 말고 그냥 함수는
연속이라고 미분 가능한 함수가 아니고
미분이 가능하면 연속이라고 알고 있는데 헷갈리네요
확실하게 알아야겠어요
수분감 미적 스텝2에
"선생님 그럼 sin1/x는요? 말도 안되는 소리하지말고 " 한 5번쯤 나오는데 뭔소린지 몰랐는데
드디어 ㅋㅋ..
저거 강기원이 자주 얘기하는 함순데
팔 부르르 떨기 ㅋㅋㅋ
기구하다
N제에 비슷한 개념이 헷걸리는 문제가 있는데 그럼 f프라임의 극한값은 존재 하는데 함숫값과는 다른경우에도 미분 가능할 수 있겠죠 주어진 구간대로 함수를 미분해서 구하면 좌극한 우극한은 같은데 함숫값이 다른경우가 있더라고요
수2 n제인데 다시 보긴 해야되는데 기억상 이런 문제가 있더라고요
간단하게 변곡점의 미분계수가0인 삼차함수의 역함수를 생각해보면 됨 이 역함수의 변곡점의 미분계수는 정의 되지 않지만, 미분 가능임
이건 틀린말이지요 y=x^3의 삼차함수의 역함수는
0에서 미분가능하지않지만(평균변화율의 극한의 발산) 접선이 존재한다가 옳습니다
y평점은 미분도 불가능이에용
또 재밌는사실은
1. x->a로갈때 limf '이존재한다고 원함수가 연속이면 위 극한은 f '(a)라는 점
2.반대로 lim f '(좌우극한)이 존재하고 f '(a)도
존재한다면 이 둘은 다를 수 없다는 점
-->이게 누구나 떠올릴 수는 있지만 이러한 특성을 가진 도함수는 없다는 다르부의 논증이 있지요
도함수의 연속성에 대해서 이런 정리가 있더라구요!
다르부의 부르르함수
수분감에선 이거 고등과정에선 고려 안해도 된다고 들었는데 맞을까요..?
어디 기출이죠..?? 평교사엔 아직 없고 임용 기출로 알고있는데
의대논술
김범준이 도함수 극한 ㅈㄴ까던데 ㅋㅋ
간단하게 생각하면 도함수: 단일 극한, 도함수극한: 이중극한이니까 당연히 다르다고 볼 수 있죠
그리고 진동발산 말고도 x^(1/3) 같은 함수 이용하면 존재성의 문제가 아니라, 도함수 극한을 사용했을 때 '아예 다른 값'이 나오게도 할 수 있습니다 처음 보면 굉장한 충격이죠
궁금하신 분은 핀셋 n제 시즌2 미적분 23을 참조...
!=