3月 기하 28,29,30 Solution
28. #이차곡선의 정의요소 #피타고라스
1. 삼각비를 이용, 이차곡선의 정의요소 결합 -> FA, FF', F'A 구하기
2. 피타고라스 -> PA구하기
3. 이차곡선의 정의요소 이용하기 ~ 결론부 = 장축1-장축2 임을 이용하기
29. #해석기하 #이차곡선의 정의요소
1. 함수는 그릴 수 있다면 그려보기
2. 결론부와 이차곡선의 정의요소 결합하기
3. 이차곡선의 "방정식" -> 기하관점에서 수식관점으로 전환하기
30. #이차곡선의 정의요소 #코사인법칙
1. 모르는거 = 미지수로
2. 이차곡선 정의요소 -> 삼각형 PQF변 길이 표현하기
3. 피타고라스 -> 미지수 구하기
4. 직각의 등장 -> 삼각비 추출의 틀
5. 코사인 법칙의 당위성, 모르는 길이 = 미지수로
이번 3월 모의고사는 범위가 제한적이기에, 이차곡선 4점 3문제를 출제하면서 기하관점, 수식관점을 모두 물어본 시험지었습니다.
비교적 익숙한 상황이지만 계산을 요구함, 공통 영역에 조금 더 힘을 실음으로써 변별력을 유지하였다고 생각합니다 :)
읽어주셔서 감사합니다 :D
0 XDK (+1,000)
-
1,000
-
좀 ㅈ같고 하 사람 만나기도 싫고 건강 박살내가면서 공부했는데 결과가 그러니까 난...
-
풀이는 다 기억하니까 답만은 써도되나
-
시대 강대 2
먼저 확통사탐이고요... 나이가 좀 있는 할미입니당 ㅠㅠ s2랑 시대 중에...
-
아마토포 쏘는거임? 으히히
-
늦은나이에 약대 기적적으로 붙게돼도 문제네
-
세종대로가자 0
사당역가는중
-
병신마냥
-
아 ㅈㄴ 졸린디 0
가는 길에 잠들거 같다는 이상한 느낌이,,,
-
얼버기 2
-
다리떠는거 정도는 참을 수 있죠? 예..
-
목적지는? 0
외대앞역.
-
작년 합격자 평균 75.4점. 올해는 작년보다 계산도 많고 좀 복잡한 편. 작년보다...
-
요약 : 만1세 메이져한 선천성 심장기형 수술후 대동맥 캐뉼라가 이탈하여 발생한...
-
밤샘 주술회전 시청 ㅋㅋ
-
의대증원분 대부분은 수시 지역인재 전형이라서 이미 수학 2-3등급 맞은 애들이 꿀...
-
얼버기 0
냥대 논술 두개재
-
내년 고3이고 고2 물1화1지1 고3 물2화2 선택했는데 수능 화2지1 할까요 생1지1할까요
-
ㅇㅈ 5
펑
-
군대에서 수능을 2번 보는데 , 군대 첫수능 보고 합격만하고 다시 군대인데 이...
-
ㅇㅈ 1
나만큼 한사람은 없을거야
-
비문학 문학 상관없이 추천좀여 라노벨x 수능교재x
-
암기랑 말빨이 문제네 하 평소에 말 잘 못해서 일부러 더 철저하게 하긴 했는데...
-
노베인데
-
아내가 웃옷 벗고 아파트 문 열어놓고 감자 깎다가 장면 바뀌고 아내가 자기의 둥근...
-
나도 ㅇㅈ 5
제발 박제되지 마라탕
-
기차지나간다 6
ㅠㅠ 10시에 학교를 가야해요 ㅠㅠ 부지런행
-
ㅇㅈ 7
총 68페이지 ㅋㅋㅋ 뭔 시험범위냐
-
자러가면 스탑
-
동아리 안해 연고전 아카라카 안가 rc안해 교양도 다 남초야 그리고 걔들도 다...
-
걍 맨날 중간에 깨네 오늘은 머리까지 아프군
-
과탐 두 개는 백분위 96정도이고 국수는 2 3인 상황에서 최대한 유리하게 갈 수...
-
나도 ㅇㅈ 6
제발 박제되지 마라
-
그럴러ㅕ면 전문직이 되어여할텐데……
-
서울로 가고 싶어..
-
재수생 용돈 5
얼마가젓당함?
-
된다 하더라도 그길을 모르니 볼 엄두도 안남ㅋㅋㅋ그길만 알려준다면 몇년이고...
-
다 자냐 11
바보들 크크
-
예전에 현돌 기시감 하다가 ㅅㅂ 이걸 다 해야 한다고? 하고 손절쳤는데 1컷이...
-
기차지나간당 9
부지런행
-
삼수해서 3따리면 전문직 시험은 처다도 안봐야겠죠? 1
열심히 했는대 수능은 유독 점수가 안나오더군요…
-
어차피 평생 쓸데도 없는거
-
편의점 대부분 거리가 멀거나 야간만 뽑음 지방이라 높은 확률로 최저안줌 단기로...
-
기차 지나간당 2
부지런행
-
진짜 잠 3
ㅂㅂ
-
날 붙여다오..
-
내년 목표 4
1. 재수 성공 2. 개명 성공 3. 캐논락 완주 성공 4. 오르비 끊기
-
근데 아싸랑 아싸는 서로 집밖으로 안나가서 만날일이 없다는거임
-
ㄹㅇ 잘 시기를 놓쳐서 지금 머리 겁나 아픔 ㅇㅇㅇㅇㅇㅇ
일단 좋아요눌럿음
미적분아시면 제 최근글좀..
갓
30번 닮음으,로도 풀리네요
30번에서 RF랑 RF` 길이 구할려고 삼각함수 덧셈정리 썻네요;;;
괜찮다고 생각해요, 23.09.29에 삼각함수 배각공식을 쓰면 더 유용한 문제가 있기도 했고
제가 항상 생각하는 바이지만, 멋지게 푸는것보단 푸는 풀이가 좋은 풀이라고 생각해요.
감사합니다. 처음에는 덧셈정리만 보였는데 글 읽고 코사인 법칙으로 풀려고 하니 코사인 법칙으로 풀리네요!
이번 계산이 좀 많더라고요