[강윤구T] 문제해결의 방향성(feat. 4점공략법 현강 개강 안내)
안녕하세요 강윤구입니다. 오늘은 문제해결의 방향성에 대해 말씀드려보겠습니다.
많은 학생들이 수학문제를 풀 때, 조건을 먼저 봅니다.
조건을 보면서 어떻게 이용할까를 생각하죠.
이런 방식으로 시작하면 어떨까요? 막연합니다. 조건이 무엇을 의미하는 것인지, 왜 있는 것인지
모르기 때문이죠. 또한, 수학에서 하나의 조건은 여러 방식으로 이용될 수 있기 때문에
어떤 해석의 방식을 선택해야 할지도 모릅니다. 즉, 조건을 먼저 보는 것은 비정상적인 문제풀이라는 뜻입니다.
(위의 이미지는 4점공략법 본편의 첫번째 내용입니다.)
문제는 너무나도 당연히 목적을 먼저 보아야 합니다.
그리고 필요한 조건을 찾아야 합니다. 이것은 너무나도 당연한 생각입니다. 하지만 많은 학생들은
이 당연한 생각을 하지 않습니다. 작년 수능 미적분 28번을 예로 들어볼까요?
미적분 28번 문제의 목적을 살펴봅시다. 누가봐도 f(x)가 필요한 상황임을 알 수 있습니다. 하지만
f(x)에 대해서는 x<0인 함수만 제시가 되어 있을 뿐, x>0에서의 함수는 알려져 있지 않습니다.
즉, 미정계수를 구하는 상황이 아닌 함수를 생성하는 상황이 되는 것입니다.(목적인식)
즉 목적을 확인하면 길은 정해지는 것입니다.
그러면 생성의 과정 중 무엇인지만 선택하면 끝나겠지요?
생성의 방식은 5가지입니다. 이중에 해당되는 것을 고르면 됩니다. 누가봐도 x<0일때의 특구함이 제시가 되어 있으니
4번째 방식임은 결정이됩니다. 하지만 항등식이 없네요?
그러면 항등식, 즉 식을 생성할 수 있는 표현이 있어야 합니다.
식을 생성할 수 있는 표현은 무엇이 있을까요?
수능 수학에서 좌표평면, 함수로 식을 만들 수 있는 방법은
'길이, 기울기, 길이, 넓이, 대입, 접점'
5가지만 나옵니다. (미적분의 모든 식생성 문제는 이 5가지로 식을 만듭니다.)
여기까지 분석하면 문제에 이 5가지의 표현 중 하나가 반드시 있음을 예상할 수 있지요?
실근입니다. 대입하면 항등식이 만들어집니다.
그러면 특구함을 확장해서 함수를 생성할 수 있음을 알게 됩니다.
(물론 부등식, 함숫값 이용해서 필연성도 확인할 수 있으나 길어지니 여기까지만 적겠습니다.)
그 뒤에 이어지는 부분은 지식적인 부분이 되겠죠? 계산 연습, 기초지식으로 해결할 수 있습니다.
이 과정에서 '직관', '재능'이라는 단어가 들어갈 구석이 있습니까?
수능 수학은 공부를 제대로 하면 누구나 어렵지 않게 문제풀이 방식을 고를 수 있습니다.
사고의 방향이 반대로 되어 있으니 직관적으로 찍어야하고, 재능이 필요해지는 것입니다.
조건이 아니라, 문제의 목적과 상황을 분석하고, 그에 맞는 필요한 조건을 능동적으로
찾으러 갈 수 있는 공부. 그런 공부가 진정한 시험 준비라고 할 수 있습니다.
그냥 단순히 조건보고 하고 싶은 것을 하는 것, 느낌적으로 끌리는 문제풀이를 고르는 것....
이런 것은 공부가 아닙니다. 공부를 하세요. 공부를 하시면 수능수학 충분히 극복가능합니다.
이런 정상적인 문제해결 과정을 배우고, 암기하는 것.
이것이 4점 공략법입니다.
개강 : 3월 9일 토요일 6시 30분
수업내용 : 수학 문제의 목적과 상황, 그에 따라 필요한 조건의 해석방식의 학습
대상 : 2등급이상 혹은 스타터 학습이 완료된 학생들
인강과의 차이점 : 4공법 본편 교재의 적용과정 손글씨 해설 제공
루틴용 + 적용연습용 주간지 제공
수강신청 링크 : https://academy.orbi.kr/intro/teacher/501/l
수업때 만납시다.~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
바이오스까지 진입했는데 뭐지
-
생일날 한거 1
3시에 불침번 서고 배식조 걸리고 약 20키로짜리 주군장 메고 왕복 8키로 사격장 가서 총 쏨
-
왜클릭? 발로란트에서 제트 픽해서 오퍼하는게 꼴박도 되고 저격도 되고 난 재밌는데...
-
4분뒤 다시 사라집니다
-
크아앙 3
탐구가 최대의 고민이로다 지1 생2냐 생윤 사문이냐 그것이 문제로다 6평 때 생2...
-
2024에 브랜드뉴 그거만 추가된거 맞지?
-
내가 만나자하면 다들 잠수타더라
-
이게 게임이냐
-
내가 등장했다 16
ㅎㅇㅎㅇ 메리크리스마스
-
마음의 고향 푸지근하다…..
-
평백 질문점 6
진학사 기준 이정도 평백으로 숭실대가 안되나요??
-
근데여기있는사람들 11
사람 아니고 npc같음 그냥 내가 ai랑 대화하고있는게아닐까
-
21학년도 한양대 상경논술 합격 (최저X, 57:1) 25학년도 연세대 인문논술...
-
수시이월빨리떠라 0
너무 길다 내일뜨나… 정시너무괴로움
-
예비고3이고 원래 수의학과 목표로 내신 물화생했던 이과인데 과학이 잘안맞는것 같아서...
-
그냥 공부하지 말고 호빠 선수나 할까?
-
꼴찌 의대버리고 약대가도 평생후회함? 음
-
기숙학원 들어가면 수업은 지정해주나요? 아니면 강사나 수업 횟수 같은 걸 자유롭게 정할 수 있나요?
-
2월에 혼자 오만 수영 여행 다녀오면 좀 그런가요? 4
영국 수영 트레킹 사이트에서 1,2월에 오만 수영 트레킹 프로그램 있길래 돈도 얼마...
-
셋보자임 0
어항
-
가족들은 다 크리스마스라고 놀러갔는데 내가 오늘 일어나서 한 거라곤 픽시브 잠깐...
-
대구한 추합 0
...
-
저격글입니다 14
2013년 가입한 후 갑자기 돌아와서 신상박제글을 쓴 이분 한의사를 상당히...
-
위로를 해야될까요... 안될것같은디
-
안정은 하나만 쓰고 두 개로 모험을 좀 해보려고 생각하는데 가톨리대 자연공학 계열과...
-
자신있는데
-
아오 시발
-
연뱃 받고싶은데 6
어떻게 한명도 안빠짐
-
작년에 미적분을 선택해서 시험을 봤는데, 공통과목은 22, 21버렸고 미적분에서는...
-
누가 이길까ㅡ 동일한 신체 스펙
-
만약 딱 전화 추합 시작되자마자 전화 안오면 풀린 예비 없는건가요?? 내일추합인데개쫄리네요
-
국장 1차 신청해야돼죠??
-
표본 분석중인데 4
스나각이 안보이네 교과우수 스나가 답인가
-
누가 이기지
-
아웃풋차이가 큰가요?
-
좀 짠거 같네
-
"일본어" 근데 수능때는 한줄로 밀어서 9등급임
-
서울대 경영학과에 가면 삼성 같은 기업도 mma를 해서 잘게잘게 잘라서 이재용...
-
흠
-
받고오니 마음이 편해지네요 스스로 진학사랑 텔그사서 표본 분석하고 귀찮게 하는 대신...
-
체스는 왜 이럴까 12
비슷한 애들이더라도 어릴 때 시작한 애들이 거의 압도적으로 더 잘함뇨.가끔씩 늦게...
-
아주대 프런티어과학학부(물리학과)를 선택해서 전자공학으로 전과 하는 게 최종...
-
비교적 쉬움 기본적인 단어들은 대충 아니까
-
어제오르비에먼저신상박제했던사람계정들어가니 2013년가입에... 흠... 뭔가가뭔가임...
-
수학 좋아하는 애들중에 이런거 어릴 때부터 좋아햇던 애들 많던데,난 왜 다 싫지, 다 재미없음 걍
-
세사 vs 정법 4
타임어택 너무 싫어서 하나는 동사하려고 하는데 나머지 하나는 뭘 할까요 정법도...
-
외동이 죄악도 아니고
-
https://www.instagram.com/reel/DBs-0f8PrK2/?igs...
-
드가장
수업은 오르비에서만 진행하시나요???
넵 그렇습니다.
대 윤 구
시간이 안맞아서 못듣네요
생성의 방식은 5가지입니다. 이중에 해당되는 것을 고르면 됩니다. 누가봐도 x<0일때의 특구함이 제시가 되어 있으니
여기서 특구함이 오타난 것 같아용
좋은 칼럼 감사합니다!
'특구함' = '특정 구간의 함수'입니다. 오타가 아니라 제가 쓰는 말...입니다ㅎㅎ
강의 너무 잘 듣고 있습니다. 항상 감사합니다!
쌤 제 닉 어때요
오 신기해
매우 좋은 글인 것 같습니다. 허나 초보~중수까지는 조건 보고 뭘 할 수 있는지 리스트 자체가 안 세워지는 경우도 많죠. (개념이 부족함)
저 리스트를 저에게 배워야죠ㅎㅎ초고수도 저런 리스트를 스스로 만드는것은 쉽지않다고 봅니다.
무의식적으로 생각하는것과 그것을 도식화하는것은 다른것이니까요