자작 모의고사 손풀이 파일
'외고지만 이과' 모의고사 문제지 손풀이 파일.pdf
반갑습니다 ‘외고지만 이과’ 입니다.
자작 모의고사를 배포한지 하루 정도가 지났습니다.
이 시간 쯤이면 문제를 다 푸신 분이 있을 것으로 예상되어서 올바른 풀이까지는 아니나,
제작자가 의도했던 풀이를 손으로 직접 작성하여 배포하고자 합니다.
문제에서 중요한 포인트에 형광팬으로 체크를 해두었으니 자신의 풀이와 비교를 하면서
고등학교 1, 2학년 범위를 차근차근 복습해나가시면 좋을 것 같습니다.
풀이 과정에 의문이 있거나 더 궁금한 점은 댓글로 달아주시면 확인하는대로 답장해드리겠습니다.
글 읽어주셔서 감사합니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
손에안잡히네..
-
롤이나 발로란트같은 겜 한 판하면 기 빠지고 그럼?
-
더 노래 잘 부르는 거 같은데 맞죠?
-
절 대 움직이지 않음뇨
-
나만 6문제 완전히 못품? 물론 아예 손도 못댄건 1문제고 2문제는 조금 풀었고...
-
문화시민이 되는 길은 멀고도 험하구나 여기서의 문화는 좁은 의미로 사용되었겠군...
-
충남대 기계에서 반수해서 시립대 화공이면 가는게 맞겠죠?? 6
충남대 24학번 입학해서 1년 조금 안되게 다녔습니다. 수능공부 병행했고 이번에...
-
반박시 키메라로 연성해버림
-
3.3 7
힘드러
-
D-351 공부 2
-
개꿀통인 논술을 포기하겠냐고 ㅋㅋ 논술 인원 최대한 안 줄이고 정시 인원 ㅈㄴ 줄일듯
-
집중어려움뇨 그래서 어거지로 실모 때려박음뇨
-
“밥 한 끼 고마움 잘 알아”…익명의 기부자, 강북구에 1850만 원 전달 1
익명의 기부자가 구청에 편지와 함께 어려운 이웃을 위해 써달라며 1850만 원을...
-
자궁의 기능을 알아보자 11
이거 ㄹㅇ 맞다
-
진짜 ㄱㅁ주의 9
슈바인학센~
-
고컴 특 0
맨날 빵꾸나서 4칸인데 쓰면 붙을것같음
-
주변 지인 관련 업계 종사자분들께 여쭤보거나 Blind, 리멤버 같은 직장인 커뮤...
-
2월 월드투어 쿠알라룸프르 VIP석 먹었길래 말레이시아까지 후다닥 달려옴 8월...
-
이건 아무도 못따라옴 ㄹㅇ
-
궁금허이
-
정병호의 독학기출 ㄹㅇ 좋았는데 사라져버렸네요.. 원솔멀텍은 좋긴한데 평가원만 있고
-
진짜 수능 끝나고가 더 힘드네 ㅋㅋ 수능 전에는 아무생각도 없었고 공부만 하면...
-
11번틀 -2해서 66점 정법 풀면서 어려웠는데 ㅠㅠㅠ 쉬웠나보네
-
일본사상물든다고보지말라하고 엄마랑 보면 주무심 애니는 혼자보는게 맞다!
-
연고 계약이나 연고 전컴이나 거기서 거기 아님? 오히려 전컴은 회사 선택의 폭도...
-
여기로 와야함 그대신
-
중 1 여자애 과외하는데 이번주에 기말고사 끝났는데 계속 수업을 해야되네 도대체 뭘...
-
이 애비도 40퍼나 남았단다ᆢ
-
재수땐 그 고독한 싸움에 적응하느라 미치도록 힘들었는데 삼수땐 그런 삶에 적응하고...
-
ㅋㅋ 수학 가채 2
3점 두개 나갔는데 바로 위에 선지랑 둘 다 같네 실수겠지? ㅎㅎㅎㅎㅎㅎㅎㅎㅎ 시발...
-
높음?
-
그리고 수능치면 다맞으면 최대 어디감? 화작 미적 정법 경제로 간다하면 베이스는...
-
일출 시간대인 듯요 아침 7시에 어둑어둑 수준이 아니라 어두컴컴한건 1~2월 아니면...
-
긍정적인 마인드로 351일 공부하기 오늘의 소확행 : 드디어 올해치 예비군 끝 하필...
-
전 주량 0.3병인 여고생이라 진짜모름
-
정법 질문 4
노베인데 12월에 코어버전 완강한개로 개강한다는데 그거로 봐도 상관없나요? 1월에...
-
전 1시간 반 ~ 2시간 하면 약간 몸이 근질근질해지면서 오르비 들어와서 눈팅하다가...
-
눈이펑펑 3
휴강하면 좋겠다
-
과제를합시다 7
D-4 근데이제 day가 아닌 h인
-
원래 73kg 였는데 학기 시작하고나서 5kg 증량되서 돼지됨...
-
지원도안해주고반대도극심하고 그냥 아무대학가라고하면 그냥포기하고 아무대학진학하세요?...
-
What's up, guys? This is Ryan from Centum...
-
근데 레즈아님 혹은 얼굴 이슈로 입밴당하겠지
-
*주의* P.I.R.A.M 국어 생각의 전개를 구매하신 분들은 2권 마지막 지문으로...
-
일좀해라 좆성
-
1. 국어 김승리T 올오카 독서/문학 -> ~~~~ ———————————————...
-
한 4년 좀 넘은듯
안녕하세요 몇 가지 질문 드리려고 하는데요
1. 14번 해설 그림에서 B랑 D가 바뀌었고 풀이를 보니까 AD=CD라고 보신 거 같은데 둘이 같을 수가 없습니다
2.19번에서 g(5) 값이 8만 2번 나오는데 이러면 그냥 g(5) 값을 물어야지 둘을 더하면 안 됩니다 16이라 하면 안 돼요
3. 25번에서 A가 (a,a/2),(a,2a)라 하셨는데 이 두 점과 (0,0)을 이은 선분 위의 무수한 점들이 다 저 조건을 만족하는 거 아닌가요? 두 점이라 하면 안 된다고 생각합니다
4.27번에서 f=a(x-2)(x-4)라 하셨는데 이거로 g(x) 적분하면 조건을 만족하지 않습니다
f=a(x^2-7x+14)가 나와야 해요 피드백 부탁드립니다
답변드립니다.
1. 14번 자체 문제 오류 맞습니다. 선분 AD와 CD가 같다는 조건을 추가해야 합니다.
그림은 그냥 잘못 그렸습니다.
2. g(5)의 값이 하나로 정해지기는 하지만, 함수 g(x)는 두 개가 나오고 그 범위도 다릅니다.
두 경우의 함수를 모두 찾을 수 있는 능력을 묻는 문제니 답에 너무 치중하지 않으셨음
합니다.
3. 같은 x좌표에 존재하는 두 점이므로 임의의 두 점이라고 생각하시고 풀면 전혀 문제가
없습니다. 하지만 그 점이 무수히 많으므로 '두 점'이라고 지정한 말은 문제가 있습니다.
4. 아무리 생각해봐도 왜 f(x)=a(x^2-7x+14)인지 모르겠는데 설명 가능하실까요?
오류 찾아주셔서 감사드립니다.
25번에 두 점이 같은 x좌표여야 하는 이유가 있나요?
27은 합성함수 미분하면 g'(k)=2f(2k)-f(k)입니다
그러면 g'(k)는 이차함수고 1과 2에서 부호가 바뀌니 2f(2)=f(1),2f(4)=f(2)입니다
정리하면 f가 저렇게 나옵니다
답변드립니다.
25번 문항에는 점 A가 직선 x=a 위에 있다는 정보를 추가하겠습니다.
27번 문항에 대해서는 오랫동안 고민을 해봤습니다.
피드백을 남겨주신 분의 의견은 한 함수 f(x)를 미분한 함수가 0이 되는 x값이 함수 f(x)가 극댓값과 극솟값을 갖는 위치임을 말하시는 듯 합니다. 아래는 저의 생각입니다.
한 다항함수를 f(x), f(x)를 미분한 함수를 g(x)라고 가정해보겠습니다.
그렇다면 아래 첫 번째 그림과 같이 나타낼 수 있을 것입니다. 그렇다면 첫 번째 그림의
식은 G(x)-G(a)로 나타내어도 상관이 없을 것이고 그 식을 미분했을 때 상수항인 G(a)가 사라지며 g(x)가 됩니다. 즉, f(x)는 g(x)를 적분한 식을 y축 방향으로 평행이동시키는 것 뿐이고 그 이외에는 그래프 모양에 전혀 영향이 없습니다. 그래서 f(x)를 미분하여 0이 되는 지점에서 극댓값과 극솟값을 갖는다 하여도 문제가 없습니다.
하지만 27번 문항 같은 경우에는 g(k)=F(2k)-F(k)이고 상수항이 존재하지 않습니다. 즉 g(k)는 단순히 f(x)를 적분하여 y축 방향으로 평행이동시킨 것이 아니라, x축으로도 평행이동이 가능합니다. 그래서 g(k)를 단순히 미분하여 0이 되는 지점이 극대 극소라고 생각하는 것은 오류가 있다고 생각합니다. 적분을 그래프의 넓이 구하는 방법으로 생각해보시는 것도 괜찮을 것 같습니다.
비슷한 문항으로 23학년도 고3 6월 모의고사 20번 문항이 있습니다.
g는 미분가능한 함수이므로 첨점이 생기지 않고 문제에서 g의 증감을 줬다는 건 g'의 부호를 줬다는 거고 g'의 부호가 바뀌는 곳은 g'=0을 만족한다는 것입니다
미분가능한 함수의 증감이 바뀐다는 건 도함수 부호가 바뀐다는 거죠
그래서 g를 미분해서 0되는 곳이 극대 극소다 하는 건 별 오류가 없습니다
실제로 저 f로 g 만들면 조건을 만족하잖아요?
그냥 저 조건을 만족시키는 함수가 너무 많은 듯 합니다. 문제 다시 만들겠습니다.
29번 2세타1 구하는거 O1,A,O,B가 한원위에 있다 사용해서 원 중심잡아서 AB에대한 원주각 2배로 중심각 2세타1해서 구해도되네요 직각이라서 길이 5,2로 잡으면 반지름 길이 7/2인거 바로 알수있고 AB길이도 2루트10있으니까
좋은 의견이네요 저때는 문제 만든지 얼마 안되서 몰랐었는데 지금 보니 그래도 될 듯 합니다. 관심 가져주셔서 감사합니다 :)