급수 명제 이거 성립함?
저는 성립하는거같은데 수학황들 도와주십쇼 ㅠㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
페레로N 0
너도N수야?
-
내성 생겨서 효과 없다 말고 역으로 작용하는 것도 가능한거임?
-
나도 오빠좋아함 5
나는 정상이라고생각해요. . 집에 동거도하고 밥도먹고 잠도 같이 잠 ㅇㅋ? 군대도...
-
왤케 덥지
-
풀로 달리니까 아치멩 못 일어나겠네 오늘도 늦잠자버렸어
-
내가 본 사설 중 가장 답이 깔금하게 떨어지도록 설계된 거 같음
-
추워 1
-
학원 가기싫다 6
...
-
나님 기상 0
안녕 세상아!!!!!!
-
이거만 오르비에 3번째 올리는데 자꾸 정신병이라 그러는데 좋아할수도 있는거 아님?...
-
이익사회 공동사회 뭐 이런 거 나오고 갯수 세는거 약한데 어떤거 해야하는지 추천해주세요!
-
강x 시즌1~3 푼거 12회분 점수 쭉 점수 보니 확실히 알겠음 아쉽지만 인정하고...
-
수학 9모 88이었고 10모 80인데 (각 실수 1개) 예전엔 계속 76...
-
"킬캠 10쩜" 뭔데 킹받게
-
배변 패턴 정상화됐다 10
이젠 7시20분 딱 되면 똥마려워짐 ㅋㅋㅋㅋ 국어시간에 일어날 수 있는 변수는 거의 다 차단했다
-
좋은 하루 되세요!
-
진지하게 23수능 준비할때보다 독서가 빡빡한거같은데 뭘 어케해야되지 원래 경제 법...
-
쥰내 춥네 4
수능한파라는게 있긴 있군아
-
지금 의욕도 잃고 뭘해야할지도 모르겠고 배모 오지모는 왜자꾸 2,30점대에서...
-
저게뭔데 ㅋㅋㅋ
-
2배속으로라도 강e분 들을까요? 혼자 정리하려 했는데 분량이 너무 많아서..
-
오늘도 파이팅. 몸관리 잘하자.
-
다들 차렷. 1
학원으로 갓! 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘
-
얼리버드 기상. 5
-
조이는 보이가!
-
얼버기 4
D-8
-
킬캠 10점이 뭔데 씹덕아
-
이감 중요도 c 0
C에도 없는 작품은 안봐도 되겠지..?? 중요도에 아예없는작품 나온적 있나
-
얼버기 3
D-8 화이팅!!!!
-
늦버잠 2
어차피 내일 오후 수업이라 괜차늠 ㅋㅋ
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
-
이상하게 취향은 아니네
-
...
-
이거 이기면 뭐 주나? 노벨상? 주제궁금하면물어보세
-
정답이2222ㄷㄷ
-
나도 질문 받아볼까 29
국어 원툴 24언매 표점 145 백분위 100
-
아직 반팔입어도 되겠군
-
살인마들은 그냥 유전적버그가 나버린 일종의 오류 생명체 이지 않을까 신기해..
뭘 질문하는 거죠??? 왜 성립하냐고 물으시는 건가요?
그런거라면
1. (무한)급수의 합은 부분합의 극한으로 정의한다.
2. 부분합은 홀수번째 항의 합과 짝수번째 항의 합으로 나타낼 수 있다.
3. 홀수번째 항의 합과 짝수번째 항의 합의 극한이 각각 수렴한다.
4. 따라서 부분합의 극한도 3.의 각각의 수렴값의 합으로 수렴한다.
이렇게 논리 전개하면 됩니다.
네 어떤 논리인지 모르겠어서 ㅠㅠ 감사합니다
수렴하는 리미트는 끊을 수 있으니까 끊고 홀수합+짝수합=전체합이니까 1부터 무한대까지인 합을 홀수합 짝수합으로 고치면 저렇게 나오는 것 같은뎅..
미적분 까먹어서 아님말고..
a_2n을 b_n, a_2n-1을 c_n, an의 합을 An, bn의 합을 Bn, cn의 합을 Cn이라 두고 생각해보시면
an의 급수 = lim An
An을 A_2k, A_2k-1로 나누어서 보시면 A_2k = Bk + Ck, A_2k-1 = B_k-1 + Ck 가 되어서
A_2k, A_2k-1이 같은 값 p+q로 수렴한다는 걸 보일 수 있습니다.
n을 짝수, 홀수로 나누어서 같은 값으로 수렴한다는 것을 보였으니 모든 자연수 n에 대해서 p+q로 수렴하게 된다고 정리해주시면 되겠습니다.
정말 감사합니다!!
메모좀 해둘게요
n을 짝수, 홀수로 나누어서 같은 값으로 수렴한다는 것을 보였으니 모든 자연수 n에 대해서 p+q로 수렴하게 된다고 정리해주시면 되겠습니다