최대 최소 극대 극소 (Global/Local + Max/min)
뭔가 혼자 엄청 크거나 혼자 엄청 작은 값을
extreme value라고 합시다.
이차함수 f(x)=x^2+x+1에 대해
x=-1/2일 때 함숫값 3/4은 extreme value입니다.
혼자 작기 때문입니다.
우리가 최솟값, minimum이라 부르기도 합니다.
근데 이렇게 최댓값이나 최솟값은 아닌데
그 근처에서 바라봤을 때 최댓값으로 생각할 수 있거나
그 근처에서 바라봤을 때 최솟값으로 생각할 수 있는
그러한 값들이 있습니다.
얘네도 extreme value로 분류해줍니다.
그런데 앞에 봤던 최대, 최소와는 구분해줍니다.
local extreme value라고 해줍시다.
따라서 최대, 최소는 local maximum, local minimum과
구분하기 위해 global maximum, global minimum으로
불러 줍시다.
따라서 extreme value를 위와 같이 분류해봅시다.
최대와 최소가 있고.
그 근처에서만 최대 혹은 최소로 볼 수 있는 애들이 있고
멀리서 봐도 최대 혹은 최소로 볼 수 있는 애들이 있습니다.
교과서에는 다음과 같이 소개합니다.
Local Minimum : 극소
Global Minimum : 최소
Local maximum : 극대
Global maximum : 최대
근데 저는 극, 최보다 local, global이 알아듣기 편해서
local max와 local min, 그리고 global max와 global min으로
부르기를 좋아합니다. 더 직관적이라 생각하기도 하고요!
극, 최는 우리가 극상위권, 최상위권 할 때는
극상위권이 훨씬 공부 잘하는 집단을 일컫는 표현으로 쓰곤 하는데
여기선 특정 지역에서만 센(?) 애들을 극이라 하고
전지역에서 센 애들을 최라고 하니 반대 느낌이잖습니까.
뭐 아무튼 돌아와서...
우리가 후에 수학2에서 a를 정의역의 원소로 하는 어떤 함수 f(x)에 대해
x가 a에 한없이 가까워질 때 f(x)가 한없이 가까워지는 값이 존재한다면
그 값을 함수 f(x)의 x=a에서의 극한값이라고 하고
함수 f(x)의 x=a에서의 극한이 수렴한다고 합니다.
그리고 x=a에서의 극한값과 함숫값이 일치하면
함수 f(x)가 x=a에서 연속이라고 합니다.
만약 어떤 닫힌 구간 [p, q] 내의 모든 x값에 대해
함수 f(x)가 연속이라면 우리는
구간 [p, q]에서 함수 f(x)가 연속이라고 합니다.
참고로 닫힌 구간, 열린 구간을 논할 때는
위와 같이 생각합시다. 좌표평면에서 (Cartesian Coordinate)
점의 좌표를 논할 때에도 (p, q)와 같은 표기로
x좌표와 y좌표를 나타내지만... 구간 끝을 포함하지 않는
열린 구간을 이야기할 때도 (p, q) 표기를 사용합니다.
위 내용이 최대 최소 정리 혹은
The Extreme Value Theorem입니다.
쉽게 말해 고1 수학 입장에서는
실수 전체의 집합에서 연속인 다항함수에 대해
어떤 닫힌 구간을 잡으면 그 구간 내에
반드시 다항함수의 최댓값과 최솟값이 존재한다는 것입니다.
아까 보았던 이 그림에서는 구간 [-1.5, 3]에서
x=-3/2일 때 최솟값, x=3일 때 최댓값을 지니죠?
즉, 구간 [-1.5, 3]에서 주어진 함수 f(x)=x^3-x+1는
x=-1.5에서 Global Min을, x=3에서 Global Max를 지닙니다.
구간을 [-0.75, 1]로 좁혀보면 어떨까요?
이러면 더 이상 x=-0.75나 x=1과 같은
구간의 끝값에서 함수가 Max/Min을 지니지 않습니다.
대신
여기랑
여기에서 각각 Local Max와 Local Min을 지닙니다.
뭐 이런 식으로 생각하자는 것입니다.
1. 연속 함수는 닫힌 구간에서 항상 Max / Min 존재
2. 구간 [p, q]에서 f(p) 혹은 f(q) 혹은 Local Max 혹은 Local Min 이
최대, 최소가 될 수 있음 (Global Max 혹은 Global Min이 될 수 있음)
어떻게 보면 Local Max/Min일 때
Global Max/Min이 되는 기회를 잡는 셈이죠.
우리 고등학교에서도 1등을 하지 못하면
전국에서 1등을 하지 못하고
대한민국에서도 1등을 하지 못하면
전세계에서 1등을 하지 못한다는 생각으로
경쟁에 치열하게 임해보시면 어떨까 하는 생각이 듭니다.
물론 이는 진보와 보수라는 이념의 문제,
좌와 우라는 이념의 문제와 깊이 연관되어 있지만
어쨌든 공부를 하는 우리 입장에서는
대학수학능력시험 혹은 내신 평점?이라는
결과물을 얻어낼 때까지
경쟁에서 패배한 자의 마음 가짐으로 임하기보다
반드시 승리해내리라는 마음 가짐으로 하루 하루를 보내는 것이
좋지 않겠습니까.
그렇다고 같은 반 친구, 같은 학교 친구를 경쟁자로 바라보진 마시고...
높은 확률로 다른 학교 친구를 경쟁자로 인식하는 것이
더 도움이 될 확률이 큽니다.
외대부고 등 특수한 학교 몇 군데 말고!
이러한 맥락에서 이차함수의 닫힌 구간에서의 최대 최소를
생각해보시면 앞서 학습한 Global/Local + Max/Min의
네 가지 경우의 수와 The Extreme Value Theorem에
근거해 이해해볼 수 있으실 것입니다.
이렇게 공부해두시면 후에 수학2 공부할 때
이렇게 공부하지 않은 학생들에 비해
더 쉽게 이해도를 높여볼 수도 있을 것이고요!
+ Local Max라고 Global Max는 아니지만
Global Max면 당연히 Local Max이기도 하겠죠?
우리 학교 전교 1등이 전국 1등이라 단정지을 수는 없지만
전국 1등이 우리 학교면 당연히 우리 학교 전교 1등인 것과
같습니다. (정시 기준) 비슷한 방식으로 Min도 이해해보세요~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
잠 안와서 ㅇㅈ 3
난언제쯤잘수있을까
-
대학라인 0
언미화1생1 87 99 3 73 91 라인좀 봐주세요..
-
지금 미친듯이 존나 해놓기는 해야되나
-
음 졸린 아침. 1
다시 자기.
-
...??
-
금방가네
-
나만 걱정되나 3
마킹실수했을까봐 존나 걱정됨
-
00년생이지만 빠른년생이라 99년생이라 보시면될듯합니다 군제대 완료했고 작년에...
-
님아. 7
저 좀 자라고 따끔하게 말좀 해주세요 님아.
-
광덕이와 닮았다
-
엉엉울었어 7
사랑하는 나의 억압자 44화를 봐버렸어
-
1. 일을 해결하는 프로세스를 계획하는 TF를 만든다 2. 일을 해결하는 프로세스를...
-
화장실 아닌거같고 갑자기 아파서깼는데 약간 속이 더부룩?하고 배가 스르르 아프다가...
-
바로 지원함
-
진학사5칸 텔그기준 55퍼떠요
-
전사의 힘스탯 같은거임 암기못하는데 공부하려고 하는건 인트 찍고 전사 하려는거랑...
-
집에서 맥도날드가 너무 멀리 떨어져있음 조조같다
-
anything ok
-
감튀 웨지감자 해시브라운 크아악
-
호빠에서 일할정도면 11
얼마나 잘생겨야함? ㅈㄴ 궁금하네
-
저 110렙 넘김 ㅎ
-
틀닥은 가라 4
펨코 오유 웃대 하나 골라서 ㄱㄱ
-
1.마스크껴서얼굴가리기 2.다이소거울보지않기...
-
ㅈㄱㄴ
-
예체능, 유투브, 사업은 재능이라는 핑계로 시도조차 안하면서 정작 공부야말로...
-
공부도 안하고 폰만 보면서 계획만 세우는데 진짜 자괴감든다 오늘 한것도 없고 남들은...
-
세점먹으면 질리는 개거품음식인데
-
동덕여대 라커지우는건 AI가 대체할 수 없음 거기다 이런 일들은 앞으로 더 많아질 예정임
-
여전히 ㅈㄴ 많기는한데 대신 반일도 줄은거같음 제식갤 유저가 줄었나 예전에는 선넘는...
-
똑똑 3
다들 자니?
-
물리50 1
물리50 백분위 99나 100나옴? 주위에 만점자가 생각보다 많아서 걱정이네
-
화2 해볼려는데 1
화2 하려면 1내용 어느정도 알아야된다고 해서 그런데 문제는 제가 화학이 아예...
-
투명하다 투명해 1
이제 좀 정신이 들어?
-
내가 자살한다면 3
내 흔적조차 발견하지 못 할 것입니다 진짜로
-
ㅈㄱㄴ
-
왜냐면 그건 4수해서 서울대로 가라는 신의 계시나 다름없기 때문 그냥 완전 럭키빗치...
-
아오 뭐야 12월이네 11
곧 크리스마스
-
수능 전엔 공부가 고통 수능 끝나니까 장염이 고통 성적표 나오면 점수가 고통 언제쯤...
-
반가워 8
-
국어는 물로 나와서 변별 안되고 수학 13까지는 누구나 맞출 정도로 공통 개쉬워서...
-
존재한다 안한다 설공은 답변 ㄴㄴ하셈뇨
-
양의 실수 전체의 집합에서 정의된 두 연속 함수 f, g에 대하여 (가) 방정식...
-
질문해드림뇨 27
오르비살리기프로젝트
-
젊은것들이 벌써자?
-
잔다고 하는글 절 대 안잠 이건 연역적으로 증명됨뇨
-
4벙으로 푼거 기억나는데 가채엔 왜 3이라고 돼있을까 1번문젠데 한문제에 등급이왓다갔다 ㅠㅠ
Local을 relative라고도 해서 괜히 헷갈림
동네 최대, 상대적 최대... relative max/min이라고도 하는 것은 처음 알았네요
왜 극소 극대일까
국소 국대는 안되나
국소성의 원리 ㄷㄷ
불연속 극대극소 설명 좀 해주세용! 전 요즘 그걸로 문제 만들어 먹고 있습니당ㅋㅋ
불연속 함수에 대해 극값을 찾는 상황 말씀하시는 것인가요? 본문에 소개된 Local Max/Min의 정의에 따라 판단하면 되기 때문에 추가적인 설명이 필요할까 싶습니다 ㅋㅋㅋㅋ 물론 처음 배울 땐 불연속 함수가 어색해서 어라 하게 되는 것은 잘 알고 있다만
문제 구경하러 갈게요!