이차방정식의 판별식과 이차함수 사이의 관계, 켤레근
중3, 고1 수학에서 학습할 수 있듯이
모든 이차식은 p(x+q)^2+r 꼴로 정리할 수 있습니다.
이때 y=p(x+q)^2+r 이라는 이차함수의 그래프는
직선 x=-q에 대칭이고 점 (-q, r)에서 최대 혹은 최소를
지닙니다.
적당히 a=b=c=1 정도의 이차함수를 관찰해봅시다.
얘는 그럼 x=-1/2에 대칭입니다.
여기에서 켤레근의 성질을 증명해봅시다.
먼저 일반적인 상황, 모든 계수가 실수일 때입니다.
이때 만약 b^2-4ac<0이라면, 다시 말해 판별식의 값이 음수라면
꼴로 근을 작성할 수 있습니다.
따라서 만약 한 근이 허근임이 밝혀진다면
그것을 x=p+qi (p, q는 실수) 라고 할 때,
x=p-qi도 근이 되는 것이 대칭성에 의해 자명합니다.
계수가 모두 실수라는 조건이 붙는 이유는
p에 해당하는 -b/2a와 q에 해당하는 루트(ㅣDㅣ)/2a 가
실수여야 z=a+bi (a, b는 실수) 꼴로 나타내어
실수 부분과 허수 부분에 대해 깔끔하게 논해볼 수 있기 때문입니다.
비슷한 방식으로 모든 계수가 유리수라면
루트 안이 제곱수가 아닐 때
x=p+q or x=p-q로 깔끔하게
유리수 부분과 무리수 부분? 으로 작성해볼 수 있습니다.
따라서 x=p+q가 근이라면 대칭성에 따라
x=p-q도 근이 되는 상황임을 알 수 있습니다.
계수가 모두 실수일 때와 모두 유리수일 때
켤레근에 대해 논하는 상황을 살펴보았는데
핵심은 대칭성입니다.
그래프를 그려 시각적으로 확인해보면
처음 보았던 것처럼 x=-b/2a 가
대칭축이 됨을 확인할 수 있습니다.
물론 x=-b/2a 이렇게 기억해두시기보다
항상 직접 유도하는 습관을 길러두셨으면 좋겠고
x=-(이차방정식의 일차항 계수)/(2x(이차방정식의 이차항 계수))
이렇게 말로 풀어두시면 더 좋겠습니다.
후에 수학1에서 등비수열이라는 수열을 배울 때에도
등비수열의 합 공식을 기억할 때
저렇게 수식으로 기억하는 것보다
(첫째항에서 마지막 다음 번째 항 뺀 거)/(1에서 공비 뺀 거)
이런 식으로 기억해두시면 좋습니다.
비슷한 방식으로 조금 더 정리해보면...
"첫째항 곱하기 (1-공비의 항수 제곱) 나누기 (1- 공비)"
이렇게 말로서 기억해두시길 권해드립니다.
참고로 이는 2020년 1월 일산청솔에 계시던
정낙봉 선생님께서 제안해주신 것임을 밝힙니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
28학년도 수능은 문이과 완전 통합이잖아요. 그리고 고교학점제 시행한 애들이 보는...
-
뭔 길이 다 빙판이야
-
무지성으로 상대한테 죽어주고 타워 민 뒤에 자기는 운영하는건데 우리팀 뭐하냐고...
-
설카포연고 의치한약수 그리고… ‘건’
-
https://orbi.kr/00070161683/2026-%EC%8B%9C%ED%9...
-
여기가 ㅈ반고가 맞는진 모르겠는데 집 앞에 평반고 가는 것보단 더 낮은 데 가는 게...
-
둘 다 붙으면 보통 어디 가나여?
-
뻥임뇨
-
이승효T 느낌의
-
수능 잘보신 형님들 뱃지 갈아끼우고 새단장 하는 시즌 특히 옯창이 의치한약수...
-
외향적 내향적 6
본인은 50/50임...
-
슬슬필요한가 4
ㅇㄷ좀 그만봤으면 좋겠는분있는데
-
걍 보기싫음..
-
그리고 합격발표까지 다시 4주 존버하고?인내의 숲이 따로 없다 ㅋㅋ
-
걸으면서 실시간으로 눈사람이되
-
아직까지 속단하기는 이르지만 27년도 계획인원을 줄이는 걸로 확정이 나게 된다면,...
-
말그대로 독해력 ㅆㅎㅌㅊ여서 고2모고 3-4등급임(나름대로 노력한 결과) 그래서...
-
오르비 인스타 2
팔로워 각각 1000명
-
오늘은 많은 분들이 고민하실 것 같은 컨텐츠에 대한 저의 리뷰들을 정리해보았습니다....
-
ㄱㅁ주의 17
3차...
-
4수 고민.. 2
현역 국숭세단 재수 건동홍숙 삼수 건동홍숙.. 현역때는 공부 하나도 안하고 수능치러...
-
심심해 2
제곧내
-
오르비 인스타 6
팔로워 1000명
-
김범준때문에 대성살만함?
-
모고는 올해 모두 1떴고 틀리는 문제는 문법 부분에서 항상 틀렸어요 근데 언매...
-
왜일까요.. 인스타 계정은 있는데 소식이 안 올라와서 걱정됨
-
혹시 주변에 고대 미디어학부 재학생분 계시나요
-
이거 왜이래
-
생각보다.. 20
국잘수망 문과들 올해 희망이 좀 있을듯
-
평소 제일 잘보던 국어 제일 망하고 생윤 사문도 망하고 아무것도 하기 싫네요.....
-
서울대식은 표준점수로만 계산하니까 2023처럼 수능이 쉬우면 당연히 서울대식 점수도...
-
갑자기 무슨 처음보는 마켓 링크올리면서 여기 클릭하고 쳐올려달라길래 존나 배쨌는데...
-
윗 급간 어문, 아랫 급간 공대 중 어디가냐 논쟁 있길래 이건 어떤가 해서 물어봅니다
-
후한 순(체감): 낙지 -> 텔그 ->>>>>> 고속 낙지 = 지금은 좀 너무...
-
부산의논 2
마지막문제 기억나는사람? 혹시 풀이도 가능할까유?
-
학교만봄
-
이과는 모르겠고요 노어노문 불어불문 같은 곳 쌩노베가 가면 많이 힘들어하더라...
-
버스 11분.. 4
-
슬슬 시내에서 스키타고 퇴근하는 사람 짤 뜰때됐는데
-
과외...는 못할듯 10
가르치는거 자체는 좋아하는데 말을 조리있게 못함... 조교나 해야겠다
-
아는 지인인데 ㅈㄴ 안쓰러워죽겠음여... 작수때 잘쳤는데 원서 터져서 +1 했고...
-
방송은 데프트 계정 '혁규킹' 에서 합니다...
-
좀만 더 잘볼걸
-
이건또머야
-
세무사 지망 2
세무사 지망하는데 둘중 어느게 더 낫다고 보시나요?
-
오르비 공모전 보다가 14
삘받아서 몇 개 그려봄 미대 준비하면 히틀러될 듯 ㅇㅇ
-
어떤새끼가 이딴 링크 쳐보내는데
-
디씨 의외인점 20
의외로 전체성비는 반반임
첫번째 댓글의 주인공이 되어보세요.