Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내 주변 지인한테 나 안 뜸?
-
37살에 5급공무원이면 대기업 회사원이랑 비교해서 어떤게 더 좋을꺼같음?? 대기업은 현대자동차임
-
단순히 공대를 서울로 옮기기만 해도 입결 개떡상 할듯
-
ㅣ
-
노래 부르는걸 굉장히 좋아하는데 잘부르지는 못함 그러다가 반끼리 노래방을 가게됨...
-
여기까지
-
원래는 옯생을 타 커뮤로 확장하는건 안하려고 햇는데 모종의 이유로 만들게 될듯......
-
ㅇㅈ 11
하트와 색칠은 특정을 막기 위한 몸부림임니다. (맘에 안드는 부분 가린건 안비밀)
-
사실 여장한거야 11
넵
-
내놔.
-
성시경 서한중외 3
왜클릭
-
개인적으로 태생 몸 1개 커마 몸 1개해서 2개있음 좋겠어요 7
나도 하와와 여장 미소년이 되고 시픈 거시야
-
솔까 성>서한 아니냐? 14
ㅈㄱㄴ
-
전 7살 때 63빌딩 간 적 있음 깝치지마
-
설경이 좀 애매한 점수였어서(가채점표 잘못 마킹해서 설대식 400이었음) 수업을...
-
인스타 ㅇㅈ 1
어디 모임에서 팔로우하고 다시는 연락 안하는...
-
이제 발라야겠다 흉측하거나 못봐줄정도는 아닌데 볼 사이드랑 눈썹 옆쪽에 자국 꽤...
-
혼틈질받 5
-
이륙이라니 3
지워야겠군..
-
ㄹㅇ자러감 2
좋은꿈꾸세요
-
좀 급조해서 오류 있을 수 있습니다. 지적 환영합니다.
-
문과고 진학사로 국캠은 6칸 설캠은 3-4칸 뜸 그냥 설캠 지를까 어차피 반수할거긴 함
-
1 밑줄 왜 긋지말라하는건지 잘 모르겠음 저한테 밑줄은 그냥 하나의 집중을 위한...
-
수원캠 어떤가요?? 1. 놀거리 많은지 2. 주변 인프라 괜찮은지 3. 서울(강남)...
-
국어가 유독 재능vs노력 논쟁이 많이 나오는 이유는 (순수 지능 높아서 잘하는 애들...
-
병신됨?
-
인스타 ㅇㅈ 14
-
진심 한 100개는 있어도 다 채울텐데
-
앞으로 99계단 남음
-
올오카 가격 0
너무 사악해요..
-
나 대학가면 일어날 일 11
???:혹시 오르비 하지 않으세요?
-
어디에서 무엇을 긁어오는 게 좋을지, 어떤 걸 가져오는 게 좋을지 감 잡기부터 어려워요...
-
할 말이 한 트럭이긴 한데
-
높은과는 걍 가나군만 쓰는 용자가 많나?? 의문입니다
-
고요하구만
-
내일 점메추 좀요
-
해주세요 작년에는 대성메가 둘다요
-
차단 다푸러봄 13
후
-
ㄹㅇ
-
www.instagram.com/iUofficial/
-
결국 경계선 지능 장애같아서 울음
-
부산대 수준 6
부산대 사범대 정도면 인서울 어디랑 비빌까요??
-
토스 오류인가 1
354달러만큼 주문하려고 하고 주문가능금액은 1000달러가 넘는데 왜 잔액이 부족하단거지
-
캡쳐해서 보낼 때 입금자 이름이 3글자 다보여야 되나요??
-
그냥 새내기처럼 똑같이 놀고 학교생활하고 하나요? 아니면 조금 더 열심히 해야하나요?
-
대대대
-
복학하면 뒤쳐지는거임?
-
미국 사람들이 2
한국 사람들보다 키 큰가?
-
사이트(?) 앱(?) 추천해주세용,, 올해 정시로 메이저의대 안정권이고, 인강 영어...
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼