수학 질문
저게 왜 (2,3) 점대칭이 되나요 미분하면 f(2+t)-f(2-t)=6 이 되는데 f(2+t)+f(2-t)=6 이되야 (2,3) 점대칭 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
어느 정도 운도 따라야 해서.. 내년에도 잘볼거란 보장이 없으니까 마음이 심란하시겠네
-
올해 문과만점으로 냥의가시는 분이 문과 메디컬 최고 아웃풋아님?
-
시험 방식이 좀 특이해서 빈칸 ㅈㄴ뚫어놓고 풀이과정 완성하는건데 빈칸뚤어놓은부분에...
-
너무 심한 소리만 빼고,,,
-
다른건 이해되는데 공산주의가 21%나 나온건 이해가 안되네 2
나도 사회주의 성향이 있는 건가
-
로준해도 될듯... 솔직히 한번더해서 약수는 아깝지 않나 올해 경한 성적인데
-
요즘 수능 메타 0
있잖아 내가 이과인데.. Q.화작할까? A.니 맘대로 해 Q.확통할까? A.니...
-
진학사 3칸이였고 점공률 46퍼입니다 발표날이 24일인데 발뻗잠 해도 될까요 ㅠㅜㅜ...
-
아 시발
-
영향을 주는 비율이 더 높다고 생각하는 쪽에 투표 ㄱㄱ
-
어떻게 과 이름이 농 ㅋㅋㅋ
-
ㅋㅋㅋㅋ
-
부모님이 뭐라하든 내맘대로 살아서 진짜 후회가 군수 안한거 이거말고는 없음 대신...
-
지금은 뭘 하고 있는지도 모르겠고 재미도 없음
-
기준은 내맘대로
-
정외 심리같은거 배워서 어디다써먹지 아 어렵다
-
근들갑 2
근들근들
-
별로임?? 원리원칙주의
-
24학년도 교육청 학평 킬러 중 제일 GOAT라고 생각하는 문제 9
24학년도 10월 학력평가 22번 구간별로 정의된 함수인데, 함수 의 부호에 따라...
-
보통 설경을 안쓰면 농경제를 쓰려나 정외를 쓰려나 11
아무래도 농 때문에 정외려나..?
-
사탐 언제 시작할거임
-
머리 6
가슴배
-
연애기술 좀 익히려구여
-
과외에 특강에…. 내 2배 이상을 쓰네… 근데 영어 모고 4?등급이면 인강...
-
작수 미적 백분위81이구요. 작년에 한걸 적어보자면, 현우진T 뉴런 다 듣긴했는데...
-
ㅇㅗ빠 7
차 있어?
-
자취방에서 뭐하는 거람..
-
비둘기게이가 ㄸ치다가 갑자기 알닮은 애가 ㄸ치는 거 알고 이불 뺐어가서 후다닥...
-
영어랑 안 맞나 1
가끔 Birthday 이런 단어를 보면, 뭔가 이상해
-
소액이라도 덕코 받으면 기분 좋잖아요? 모두가 막쓰면 순환하면서 기분도 좋으니 막씁시다!
-
사실 아까 옯스타 글 올릴 때 우정이 영어로 먼지 기억 안 나서 인터넷에 쳐봣어
-
팔취할거면 하셈여...가시는 길 고이 보내드리오리다
-
서로 아무 말도 안하다가 20분? 걷고 집 옴 왜 삐져있는거야 본인이 잘못해서 싸운건데 참어렵다
-
후배 잘못둬도 한참잘못뒀다
-
도전을 안 외쳣어 깜빡하고
-
재수 했구요 여자예요 원점수 기준 언매 100 통통 92 동사 50 세사 47...
-
원하시면 쪽지주세여 。◕‿◕。
-
왜 팔로우하시는거에요.. 잡담태그도 안다는 불량이용잔데
-
"해줘"
-
저도 옯스타 홍보할께요 10
Love, Peace and Friendship
-
세계 경제 구조는 이미 바꿀 수 없음 그리고 세계 경제는 미국을 주축으로...
-
내일 하겟습니다
-
그렇다네요
-
결국 그게 최고더라고요
-
파인애플펜슬이 될때까지 대기
-
2사탐러였을 때부터 오지훈쌤 닮았다고 대충 느끼긴 했는데 과탐에 문외한이라...
미분하면 플러스로나오네용
왜 플러스로 나오는지 모르겠어요 ㅠㅠ
수2아니라 미적분맞죠??
수2인데 저거 처음 봐서요;;
엥 수2에요..?
f(-x)라는 함수가 있다고 가정하면,
이걸 미분하면 -f'(-x)가돼요
근데 이거 미적분에서 배우는걸로 아는데..
수2 n제 문제인데 처음 봐서;;
점대칭 함수 적분하면 구간길이 곱하기 대칭점높이라
구간길이 2t 곱하기 3 해서 6t라서 3이 대칭점 높이가 되는거같아요
근데 문제에 적혀있는걸로만 봐선 2가 점대칭의 중점인지 알수가 없지 않나요?ㅠㅠ 그래도 점대칭 중점이 x=2라고 가정하면 도형으로 풀리긴 하네요
F'(x)=f(x)라 하자.
\int_{2-t}^{2+t} f(x)dx 는 미적분학의 기본 정리에 의해 F(2+t)-F(2-t)이다.
주어진 항등식의 양변을 t에 대해 미분하면 부정적분의 정의와 합성함수 미분법에 의해 f(2+t)+f(2-t)=6이 되는데
따라서 함수 f(x)가 점 (2, 3) 대칭임을 확인할 수 있다.
미적분에서 학습하는 합성함수 미분법에 따르면 함수 f(x)가 x=a에서 미분 가능하고 함수 g(x)가 x=f(a)에서 미분 가능할 때, 함수 g(f(x))의 x=a에서의 미분계수는 g'(f(a))*f'(a)입니다. 확장해보면 미분가능한 함수 f(x), g(x)에 대해 함수 g(f(x))의 도함수는 g'(f(x))*f'(x)가 됩니다.
다만 수학2 문항이라면 합성함수 미분법을 적용할 수 없는데.. 적당히 그래프 그려 직관적으로 파악하는 것은 그리 엄밀하지 못한 방식이라는 생각이 들어 어떻게 설명해야할지 현재로선 잘 모르겠습니다.
아… 함성함수 미분을 못쓰는구나…. 그럼어케 설명하지