우주론 강의 1. 우주론의 기본원리&허블 법칙의 유도
음... 시간이 남을 때 우주론에 대한 강의를 좀 써보려고 합니다.
좀 어려울 건데요. 관심있는 학생들도 있지 않을까 해서 써봅니다(반응이 별로면 그만둘지도... ㅎ).
수식은 한글에서 써서 캡쳐한 뒤에 붙였는데(여기 수식 문법에 익숙하지 않아서) 자동으로 크기를 맞추려고 하는건지 크기가 제각각이네요. 음... 별로네요... 아무튼 시작합니다.
1. 등방성과 균질성
우주론의 기본원리는 등방성과 균질성이다. 등방성이란 관측자가 어느 방향을 관측하건 같은 모양을 관측한다는 것이다. 균질성은 밀도가 균질함을 의미한다.
우리가 밤하늘의 별을 보면, 이것이 성립하지 않는 것처럼 보인다. 좁은 영역에서는 등방성과 균질성이 성립하지 않는 것처럼 보인다는 것이다. 그러나 큰 범위에서는 얼추 성립하는 것처럼 보이게 된다.
그림은 기본 천문학(구판 p.457)에서 가져왔다. 좁은 원에는 은하가 2개 있고, 중심에서 이 원 내부만 관측한다면 등방성과 균질성이 성립하지 않는 것처럼 보인다. 그러나 조금 더 큰 원 내부까지 관측한다면 이제는 얼추 등방성과 균질성이 성립하는 것처럼 보인다. 이처럼 우주는 큰 영역에서 등방성과 균질성이 성립하는 것처럼 보이고, 우주론에서는 이를 기본 원리로 가정한다.
2. 로버트슨-워커 계량
직교 좌표계에서 시공간 거리는 다음으로 정의된다.
이때 는 고유거리를 나타내는 부분이다. 고유거리는 우리가 일반적으로 생각하는 어떤 한순간 공간상의 두 점 사이 거리이다.
만약 우주가 등방성과 균질성을 만족한다면, 고유거리 부분을 바꿔서 시공간 거리를 다음으로 나타낼 수 있다(유도는 하지 않는다.).
여기서 a(t)는 척도인자라고 하며, 우주의 상대적 크기를 의미한다. 정확한 우주의 크기를 알 수 없으므로, 현재 우주의 크기를 1이라고 하고, 어느 시점에서 우주의 크기를 현재 우주의 크기와 비교한 값이다. 상대적 크기이므로 무차원이다.
이 식에서 거리를 나타내는 부분을 다음으로 쓰자.
d_p는 고유거리이다. X는 공변거리이다. 이 값은 지금 현재 어떤 점이 나로부터 떨어진 거리이며, 변하지 않는다.
예를 들면, 지금 어떤 은하 A가 나로부터 떨어진 거리가 1Gpc이라고 하자. 이 은하는 공간상에서 운동하지 않는다고 가정하자. 현재 척도 인자는 정의에 의해 1이므로 X=1Gpc을 얻는다. 이제 먼 미래에 우주의 크기가 지금의 2배가 되었다고 하자(즉, a=2). 그러면 은하 A의 고유 거리는 2배가 되어 d_p=2Gpc이 될 것이다. 그러면 X는 여전히 1Gpc임을 확인할 수 있다. 이처럼 어떤 점까지의 공변거리는 우주가 커진다고 해서 값이 변하지 않는다.
또, 위 식을 보면 X가 일정하므로 r, theta, phi 또한 일정해야 할 것이다. theta, phi는 적경, 적위와 같은 개념이라고 생각하면 된다. r은 공변좌표로, 이 값 또한 일정하며 우주론에서 다양한 거리를 정의함에 있어 자주 보게 될 것이다.
3. 허블 법칙의 유도
자, 이제 고유거리를 시간에 대해 미분해보자. 그러면 이것은 어떤 점이 나로부터 이동하는 속도를 나타내게 된다.
X는 시간에 대해 상수이므로 시간에 대해 미분할 경우 0이 되므로 위와 같이 될 것이다.
이제
로 정의하면, 식은 보다 간단해진다.
이 H(t)는 어느 순간 t에서 우주의 모든 공간에서 같은 값을 가진다. 이것을 허블 상수라고 한다. 그러니까 어떤 공간상의 점이 나로부터 멀어지는 속도는 허블 상수와 고유 거리의 곱으로 주어지게 된다.
유도 과정에서 우리가 가정한 것은 로버트슨-워커 계량 뿐이다. 그러므로 우주에서 로버트슨-워커 계량이 성립할 경우에 허블 법칙이 성립한다. 즉, 우주가 등방성과 균질성을 만족한다면(그리고 상대성 이론이 옳다면) 우주에서 허블 법칙이 성립한다.
그러니까 우리가 다루는 모든 우주 모형에서 허블 법칙이 성립한다.
단, 이때 허블 법칙은 공간상의 점이 멀어지는 속도는 고유거리에 비례한다는 것이다. 만약 허블 법칙을 적색편이와 광도 거리(거리-지수 공식으로 구해지는 거리) 간의 비례 관계라고 한다면, 적색편이가 1보다 매우 작은 범위에서만 성립한다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 키 큰듯 4
고3때에 비해 1센티 정도...
-
난 그 기대 하나로 오늘도 힘겹게 버틴걸
-
근데그러다가 책이랑이불에 쏟으면...
-
나를 아는 사람들은 11
그리고 내가 아는 사람들은 대부분 오르비를 떠낫구나
-
이거뭐야…
-
작수 백분위 78로 3이긴 한데 그 이후로 손도 안 대서 감 많이 잃었습니다...
-
요즘 원신, 젠레스, 명조 이렇게 하는듯 붕괴는 초반에 하다가 때려쳤는데 명조처럼 다시 주워올지도
-
저도질문받거나해드려요 35
-
혹시나 해서.
-
흠냐링뇨 0
아함 쩝
-
잘자티비 3
반말미안티비 좋은꿈꾸라구몬
-
그러니까 빨리 팔아달라고 킅런트야.... 연휴 끝나면 그.. 올려줄꺼지??
-
자꾸 결국 발생하지도 않은 일 갖다가 마음 졸이고 있는데 어쩌죠 8
예를 들어 제가 올해 4합8 간신히 맞췄는데 4합8 못 맞췄으면 어쩔 뻔했나 이런 식으로
-
중산고였는데 문이 철문이고 조명이 개음산함 종소리도 무섭고
-
이번 정시에서 사탐2로 약대 안정권 뜨신 분 성적이 어케 되시나요
-
국어 인강만듣다 독학 첨으로 해보려는데..피램 독서 문학 둘다 좋나요? 0
제가 그냥 독서 문학 둘다 너무 취약해서.. 피램은 문학이 더 좋나요? 독서가 더 좋나요?
-
나만그런가 칠판강의보다 A4용지 손해설이 강의량도 적고 집중과 습득이 잘되더라
-
아이돌하나도 몰라서 다 구분이 안돼...
-
과탐이랑 언매 본다 했을때 최소 어디까진 받아야 쓸만하다고 할 수 있ㅇ나여 올...
-
해봄? 할짓이못됨ㄹㅇ
-
주량 기준 알려줘 13
얼굴 빨개지는거 알딸딸한거 속 뒤집어지는거 필름 끊기는거 기준이 뭐여
-
예산은 넉넉한데..
-
수능날 오열한 썰 아빠가 친척집에 다털어버렸다 개쪽팔리네~
-
본인 딱 세병
-
근데 너무 힘들다 이제 잡니다 ㅎㅎ 밤동안 댓 달아주시면 또 구분해드릴게요
-
한문장 읽다가 졸고 한문장 읽다가 졸고 글자 다튕겨서 쉽게풀어설명해주는데도 하나도 이해안되고,,
-
이때가 명곡의 시대인데
-
연애하고싶다 4
애인사귀고싶어
-
나는 84일까 88일까 걱정했는데 결과적으로 86이었음 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
솔랭에서도 어떻게 비디디 해줘!! 일수가 있지..
-
수능 수학을 ㅈ박아서 진학사도 안 사고 단순 백분위 합으로 인서울 하위권 대학...
-
수학 77점이 2는 뜰거라고 생각했는데
-
ㅇㅈ 10
펑
-
대학가면 화석취급임? 18
군인 04인데 대학가면 신입생이 07임ㅋㅋ 내가 이성적인 감정을 느끼면 좀 이상한놈인가
-
난 닝닝이조음 4
이쁘잖아~
-
이상한쿨찐병이 2
인간관계엔 없는데 다른거에 조금 있는듯 수능 보기전엔 ‘수능 망해봐야 뭐 그냥...
-
선착 15명.
-
수학개념 0
갑자기 궁금해서 쓰는데요 시발점이나 개념원리 같은걸로 개념 땔 때 어느정도 기간안에...
-
무물보 10
고대 수리논술로 감
-
뉴런하기전에 0
뉴런-한완기 생각중인데 지금 어삼쉬사 풀고잇어요 어삼쉬사 끝나고 대가리깨지면서...
-
헤이유 3
지금 뭐해?
-
체화가 잘 더 잘 되는 느낌임 주간지 때매 그런진 모르겠는데 든든함 뭔가 걍 3모...
-
25수능 끝나고 0
오늘 학교 안 가서 좋았다 생각했음
-
변표빔맞고 죽어버림
-
25수능 끝나고 3
별생각 없엇음
-
맞팔구 7
하고 자러가야지
-
뭔가 뭔가했음 학교도 적당히 먼곳이었는데
-
교실벗어나자 울음보 터짐 진짜 존나 오열하다시피 울었음
개추
헐 ㅏ 너무 기대되요 잘 읽을게요 ! 감삼다