나는 현우진 수분감 작수 14번 해설이 왜 논란이 안되는지 모르겠음
아무도 이걸 언급을 안하네?
14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이라는 멍소리를 하는걸 보고 저거 해설 바뀌겠구만 했는데 아직도 그대로더라ㅋㅋㅋ
그게 +-가 상쇄되어서 그러는게 아니기 때문에 다른 문제에 적용되면 안될 수밖에 없음.
저 해설보고 아 상쇄되는구나 정리한 애들은 언젠간 나중에 한번 틀리고 어 왜 상쇄 안되지? 할거임.
극한으로 정의된 함수의 극한이라는 소재는 충분히 미리 다뤄놓을 가치가 있는데..원리도 간단하고 쉬운데 말이지. 솔직히 뉴런에 넣어놨어야 한다고 본다.
이번에 4모 미적 30번도 작수 14번 제대로 분석해놨으면 훨씬 빨리 풀 수 있었음.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
일단 통통이들은 귀엽잖아 그러니까 열어줘
-
28수능... 과연
-
외부생 3덮 응시가 쉽지 않네ㅠ
-
미적 뉴비방 만들었을텐데 96따리라 못만든다 ㅠㅠ
-
너의 지문은누구에게 한번이라도 압축적인 지문이었느냐 - 예의없는사람, 너에게 묻는다...
-
현역때부터 생1 지1이엇는데 재수 6모 50 39 재수 9모 45 50 재수 수능...
-
로그를 질문했던 오르비언은 수2을 시작했습니다….
-
쎈 필수인가요 0
고2 9모 백분 86인데 학원 다니고 있고 시발점 수1수2 빨리 끝내고 뉴분감 할...
-
참고하게
-
국어 월간지 4
강민철 커리 탈거고 월간지 뭐살지 고민중인데 간쓸개 안하고 인강민철만 쭉 해도...
-
글이 이리 재밌는데 웹소설하러 간건가
-
수능개조진06입니다 언미생1지1 해서 75 97 2 87 94 받았는데 시대 대치...
-
프랑스에서 한국 오는 비행기 안에서 만났다고함 ㄹㅇ 낭만 그자체 ㅠㅠ 저는 저런...
-
언매 1컷 72뭐임??? 진짜 기출은 이제 의미없는거같네요... 상상 이감 한수<<...
-
사탐 노베 6모 전까지 일주일 8시간 공부 적은건가요? 1
미적 사탐으로 한의대 노리는중 피드백좀요……
-
자지를박고 10
-
주말이라 그런가 계속보이네
-
중지 굳은살이 없어지는중..
-
동국대 산공 0
쓰신분 있나요?
-
정보) 현재 난리난 테 무 x 네이버페이 대란 요약.jpg 0
https://xurl.es/4stnb
-
생지 75 96 국수가 상위권이냐 그건또 아님 근데 문과머리는 아니여서 고민됨 사탐 한번도 안해봣어
-
2학기때 반수하기로 함 25
부모님이 설대 설대 하시길래 그냥 안 하려 했는데 고경제로 옮길 목적으로 해도...
-
레일리 보러
-
서울대뱃지라는것만 기억나고 닉이 기억이 안남 글 남아있음?
-
9
.
-
점공계산기 0
네이버에 있는 셈퍼 점공계산기랑 엑셀 셈퍼 계산기랑 등수 차이가 너무 나는데...
-
같은 창원사람인게 부끄럽다
-
이제 안녕 4
처음 급하게 지었던 집인데 이제 이사 갑니다 나중에 광질하러 올수도 있으니 횃불은...
-
1차합 입력할 수 있는데를 만들어놔야지 지금 몇일쨰 이러는중?
-
로스쿨 반수 미친 제발 20
안녕하세용 06 현역 중앙대 문과 입니당 1. 중앙대 낮과라 공공인재나 경영으로...
-
사탐 노베인데 일주일에 4번정도씩 총8시간하거나 아니면 매일 한시간씩하는거 뭐...
-
기하 찍먹하고 싶으면 20
공간도형 먼저 하는것도 ㄱㅊ다봄 솔직히 이차곡선은 다들 할만 하다 느낄거고 벡터는...
-
블루베리스무디 13
블루베리스무디
-
에어팟4 에어팟프로2 버즈 프로3 뭐 살까요?? 운동이랑 인강 들으려고 삼요 장시간...
-
잘 시간이군 4
님들도 잘 주무시길
-
편돌이 경험있으신분들한테 물어봐용
-
안녕하세요. 오르비에서 1-1 대면 면접을 진행 중입니다. 현재 17일(금)까지는...
-
도전!
-
ㅇㅇ
-
급해요급해ㅜㅜ
-
ㅈㄱㄴ 윗글기원 2트임뇨
-
그.. 최적소법전 안 읽어봤나? 다른 강사들도 똑같이 헌법 조문 다루는 책 있을 텐데
-
고능아들 많아서 우럿서
-
평가원 만년 2라 공부 좀 해야 하는데
-
솔직히 ~~한다
-
문학 운문만 들을려고 하는데 어떤가요? 생감이랑 기출의 dna만 들을 생각입니다....
-
아 4
시대 재종 떨어지면 어떻게 해야할지는 생각을 안해봤네 ㅅㅂ
-
라인업이 생각보다 괜찮아짐 보강 잘한듯
-
감옥안가도경험ㄱㄴ
-
궁금한거 2
박광일과 이명학이 친했다고하던데 지금도 친할까? 아니면 이명학이 손절했을까?
상쇄 안되나요? 그럼 어떻게 풀어야 하나요
결론부터 말하자면 'f(x)의 좌극한/우극한으로 정의된 함수'의 x=a에서의 좌극한/우극한은 그냥
f(x)의 극한으로 정의된 함수나 f(x)의 좌극한/우극한과 결국 같습니다.(극한으로 정의된 함수가 평행/대칭이동일 가능성이 있기 때문에 전자로 이해하는 것이 편해요.)
따라서 위 해설은 상쇄된다가 아닌, 결국 좌극한이다로 가야 맞지요.
핵심은 '좌극한/우극한으로 정의된 함수'(이하 좌우정함)는, x=a에서 함숫값이 정의되지 않는 '극한으로 정의된 함수'(이하 극정함)에서 함숫값을 정의해 준 함수일 뿐이라고 인지하는 것 입니다. 그렇기에 원래 함수의 함숫값은 좌/우극한을 구하는데 전혀 의미가 없지요.
쉽게 말하면 좌우정함은 극정함에서 소위 말하는 빵꾸를 메꿔준 함수일 뿐입니다.
그래프로 이해하면 가장 편합니다.
예를 들어 f(x)라는 함수의 x=a에서의 좌극한은 2, 우극한은 -3, 함숫값은 1이라고 합시다.
f(x)는 x=a에서의 극한값이 정의 되지 않기 때문에, 이 함수의 극정함은 a에서의 함숫값이 정의되지 않습니다.(평행/대칭이동X일때)
하지만 f(x)의 우정함은 정의해줄 수 있지요. 이 경우 우정함의 x=a의 함숫값은 -3이겠죠?
이 우정함의 x=a에서의 좌극한을 구한다고 합시다. 자 여기서 우리가 헷갈리는 부분이 나옵니다. f(x)의 우정함은 f(x+)로 아는데, 좌극한은 어떻게 구하지? f(a+-)?
그러나 아까 상술했듯 우정함은 그저 극정함에서 정의되지 않은 함숫값을 우극한으로 정의해놨을 뿐입니다. 우정함의 좌극한은 결국 극정함의 좌극한과 다르지 않다는 의미이죠.
따라서 f(x)의 우정함의 x=a에서 좌극한은 2겠네요. 현우진 선생님의 논리라면 1이고요.
글로 써서 과연 전달이 잘 됐을까 하네요ㅎ..
그렇군요 극한으로 정의되는 함수는 준킬러에서도 잘 나오는 소재이니 잘 써먹겠습니다
좌/우극한으로 정의된 함수에 대해 잘 서술해 놓은 책이 있나요? 무슨말을 하신진 어느정도 알겠는데 약간 찝찝하네요. 관련내용 찾아보려고 14번 강의도 보고 기출책 답지도 찾아봤는데 강의들은 대부분 치환해서 풀고 책은 왜그런지 서술하기 보다는 그냥 좌극한으로 간다고만 적혀있네요. 그냥 받아들여야 하나요...
음 혹시 이렇게 이해해도 되나요? 1의 좌극한의 우극한이라는게 1의 좌극한과 1사이의 무수히 많은 실수중 하나여서 결국은 1의 왼쪽이니 좌극한이 된다.
근데 이렇게 이해하면 다른 문제가 생기는게 1의 우극한의 좌극한이 되면 오히려 1의 우극한이 되는거 아닌가요? x에 대한 함수여서 좌극한을 보는게 먼저일까요?
그렇게 이해하기보다는 그래프로 이해하시는게 빠릅니다.
하신 것처럼 식으로 이해하려면 이렇게 이해하시면 될듯 합니다!
결국 마지막에 적용되는 극한방향만 고려하면 된다고 외워두시는 것도 좋아요.
감사합니다
선생님 혹시 시간 되시면 아래 글 확인해주실 수 있을까요?
https://orbi.kr/00063066874
선생님과 제가 생각한 방식이 다른 것 같은데 이에 대해 어떻게 생각하시는지 의견이 궁금합니다.
저도 "14번 ㄴ 해설을 우극한으로 정의된 함수의 좌극한은 상쇄돼서 함숫값이다"라는 설명이 명백히 잘못되었다는 점에 동의합니다.