칼럼6) 탄젠트 이모저모
탄젠트 함수의 성질 두 가지를 소개해드릴까 합니다. 오늘 내용은 가볍고, 나름 알려진 편입니다.
일단 문제입니다.
(당연히 자작! 제가 드리는 문제에서 기출이라고 따로 언급이 없으면 다 자작일거에요)
원래는 f(x) 정의역을 좀 달아줘야 하는데(x=pi/2, 3pi/2 ...에서 정의 안 됨 이런거요) 예제문제니까 패스했습니다. 가볍게 보이는게 아무래도 더 중요하죠(?)
아무튼 문제를 풀어보겠습니다. 우선 이 상황이 왜 결정되는지를 느껴야 해요.
이 문제뿐만 아니라 다른 수학 문제를 풀 때에도 마찬가지에요. 어떤 요인으로 인해 상황이 결정되었고, 자신은 계산만 하면 답이 원하는 값을 찾을 수 있다는 걸 늘 느껴야 합니다.
그림을 그려보겠습니다.
점 A의 위치가 정해지면 점 B의 위치는 자동결정입니다. A 위치에서 5pi/2만큼 오른쪽으로 간 곳에서 함수에 점 찍어주면 그게 B에요.
한편 탄젠트 함수는 pi만큼의 주기를 가진 함수입니다. 그래서 아래 그림처럼 5pi/2 차이를 pi/2 + 2pi로 인식해볼 수 있어요.
pi/2만큼을 먼저 이동해주면 A가 위치한 것과 같은 날개(?)에서 B'이 찍힙니다. 그리고 그거와 위상이 같게끔 2pi만큼 이동해주면 세 번쨰 날개(??)에 B가 찍혀요.
위상이라던가 날개라는게 수학적 용어는 아닌데요, 직관적으로 전달하기에 이만한게 없더라구요. 앞으로도 종종 이렇게 표현하겠습니다.
여기서 B'과 A의 관계에 주목할 필요가 있습니다. 탄젠트 함수에서 x좌표 차이가 pi/2라는 것은 특별하기 때문이죠. 이유는 다음과 같습니다.
각이 pi/2 즉 90도 차이 난다면 두 직선의 기울기는 곱했을 때 -1이 나오는 관계일 것입니다. 함수에서 이를 보자면
점 B' 그리고 점 B의 y좌표가 k파이라고 하면 점 A의 y좌표는 -파이/k가 됩니다. 이 함수는 pi tanx기 때문에 그냥 k,-1/k가 아니라 거기에 파이까지 곱해진 겁니다.
그런데 아직 상황은 결정되지 않았어요. 영상을 보듯이 다음 과정이 연속적으로 보였으면 좋겠습니다. a가 -pi/4와 0 사이를 오갈 때 점 A 위치가 각각 결정되고, 그에 따라 B의 위치도 결정되는... 그 모든 상황이 아직 가능해요. 아직 a가 결정되지 않았으니 당연히 상황은 결정되지 않았습니다.
그래서 조건이 하나 더 주어져 있습니다. 점 A와 점 B를 이은 직선의 기울기가 1입니다. x좌표 차이가 5pi/2일 때
y좌표 차이도 5pi/2여야 합니다.
답은 2가 되겠네요. A의 x좌표가 -pi/4에서 0 사이에 있기 때문이죠.
한편 첫 번째 줄에서 두 번째 줄로 넘어갈 때, 정석은 양변에 k를 곱한 뒤 이차방정식을 푸는 것입니다. 근데 그렇게 하지 않고 바로 2 혹은 1/2이라고 찾을 수 있었으면 좋겠습니다.
일단 이차방정식 꼴이 될 것이니 k 값이 오직 2개라는 걸, 또 두 근이 역수관계에 있을 수밖에 없다는 걸 안 상태에서 (1, -1, 0이 아닌 어떤 수 a가 위 식을 만족한다면 1/a도 만족할 테니까요.) k=2를 넣으면 만족하니까 1/2도 만족하겠네생각하고 찾아내시는 겁니다.
숫자도 맨날 나오는 거만 나와서 그렇게 부담되지도 않습니다. 이미 이렇게 많이들 하고 계시기도 할거구요.
한 발짝 더 나아가서
이런거도 이제 바로 다음이 보이면 좋죠. 물론 중요한 내용은 아니고 그렇게 많이 나오는 계산도 아닙니다. 소소한 팁 드린거에요!
다시 본론으로 돌아가겠습니다. 삼각함수 문제는 주기와 대칭이 전부 아니냐고 말하신다면 .. 맞는 말이긴 합니다. 그런데 가끔 tan 문제에서 주기와 대칭 이외의 성질 두 가지를 묻기도 하더라구요. 지금까지는 그 성질 두 개 중 첫 번째를 소개드린겁니다.
tan 함수에서 x좌표 pi/2차이 -> 함숫값 정보 도출 가능
평가원에 나올 확률이 높냐고 묻는다면.. 전 낮다고 봅니다. 하지만 이 내용 자체로 좀 생각할 거리가 있고, 1년 내내 n제와 사설에서는 종종 보실 거기 때문에 소개드려봤습니다. 두 번째 성질도 마찬가지에요!
그 두번째 성질도 우선 문제로 소개해드리겠습니다.
(내리면 답 스포)
답은 4입니다. 풀이는 따로 없는데 방금 못 푸셨더라도 아래 내용 읽어보시면 스스로 푸실 수 있을거에요.
탄젠트 곱이 -1일 때 두 각 사이의 관계도 존재하지만, 탄젠트 곱이 1일 때에도 관계가 존재합니다.
곱이 1이라는 건 두 기울기가 역수관계에 있다는 것인데요,
역수 관계에 있다면 둘은 y=x에 대해 대칭적으로 그려집니다.
기울기 n, 그리고 1/n인 함수를 볼게요.
기울기가 n이라는 건 x좌표가 1 증가할 때 y좌표가 n 증가하는 것이고
기울기가 1/n이라는 건 y좌표가 1 증가할 때 x좌표가 n 증가하는 것이기에
둘이 y=x에 대해 완전히 대칭적인거죠.
즉, 두 각의 평균이 pi/4라는 겁니다.
(둘 다 동경을 예각으로 표현했다고 했을 때요.)
탄젠트 함수에 이를 나타내어보면
x축에 제가 pi/4, 그리고 등간격 표시를 해놨습니다. 어떤 의미인지 이해가 가실거라 생각합니다.
알려드린 두 성질을 tan 함수에 다 표시해보겠습니다.
tan 함수와 y=1/n 그리고 y=-1/n의 교점은 원점에 대하여 대칭일테니까 x좌표가 완전히 뒤집힌 것도 보입니다.
이 두 가지 성질 외에는 전부 주기와 대칭으로 끝날 겁니다. 평가원은 아마 주기 대칭으로 끝나게끔 문제를 낼 거 같지만 그럼에도 알려드린 이유는... 위에 말씀드린대로입니다 ㅎㅎ
준비한 내용은 여기까지입니다. 혹시 원하시는 주제 있다면 댓글로 언제든지 자유롭게 요청해주세요!
좋아요 부탁드리고, 팔로우해두시면 앞으로 나올 좋은 칼럼들을 놓치지 않고 확인하실 수 있습니다.
0 XDK (+1,000)
-
1,000
-
대충 220달러 벌었어 1주일동안
-
시키고보니 왜시켰는지 ㅁㄹ겟음 돈존나아까움
-
차단목록 ㅇㅈ 13
-
자몽이 왜 추천 토핑이냐 써서 못먹겠네
-
현재 메타 특) 4
-
조선치 지역인재 1
793 절대 안되는 점수인가요? 점공에서 제 앞에있는 분인데
-
대충 기만글 4
대충 놀라는 콘
-
아무리 아싸여도 말 같이 할 수 있는 친구는 있어야 하는데 편견없이 받아주기가...
-
놀랏음. 좀야하내..
-
언젠가써먹게(댓글에가게없어질듯금지)
-
군대가기 무서워 2
나이도 많고 일머리 개똥인데 진짜무섭다.
-
대학로 순위 0
신촌 홍대입구 처럼 대학가 놀거리 순위는 어떰 피시방 말고………
-
샤워하면 깨끗한 느낌이 안 들어 수련회와서 샤워하는거 같아 피부도 안 좋아지는거 같아
-
약대가서 24살에 국시 따고 개원 1년차까지 하는게 가능함? 19
약대님들 가능해요? 지인이 그렇다는데 믿기지가 않음
-
이제 고3올라가는데 내신망쳐놔서 정시준비중이였는데 다시 다녀도 되나요 초등학교 때...
-
6모로 들어갈거고 89 88 3 82 65 인데요 의대관 가면 낮반 일 것 같은데...
-
1년 내내 꿈꾸던 데에 원서를 넣었는데 왜이렇게 기분이 답답할까요
-
티원샵에 마킹하는김에 좀 서울 갈?곳 가보려는데 추천바랍니다
-
실손보험 믿고 비급여 과잉진료 못하게…실손 본인부담 확 올린다 0
불필요 비중증·비급여→관리급여 전환…본인부담 90∼95%, 병행진료 급여도...
-
나 힘들어
-
그냥 이틀에 한번씩 모고 풀려는데 ㄱㅊ? 영어 감 유지 뭐로함?
-
ㅈㄱㄴ 오리모양 찍어내는 틀 말하는거
-
수특 무슨과목 부터 풀어서 끝내는 게 좋을까요? 참고로 현역 최저러 일듯…...
-
난 별차이없는거 같던데
-
재밌어!
-
야동 끊기 6
가능 불가능?
-
사문 재밌네 0
물리랑은 또 다른 재미네
-
수분감 수1수2 걸러도 되는 문제익나여 상용로그 이제 안나오지않나..
-
지금 시발점 하고 있는데 1-2주 안으로 끝낼것같고 쎈도 같이 푸는데 c단계...
-
약간 시리즈물인데 강기분만 듣는것처럼 운용도 안되잔아
-
의대아님안가요님 0
중대 근처 맛집 ㅊㅊ좀요
-
메타는돌고돈다 0
기출이내뇌에너무쌓여버려서메타만봐도무슨글이나올지예측이되는지경에이르렀음시8
-
인하대 전전에서 반수하면 어디까지 가야 의미가 있을까요? 6
안녕하세요 2025 수능을 응시했지만 기대만큼 성적이 나오지 않아서 반수를 할지...
-
알바 퇴근 12
와 ㅈㄴ 춥다
-
나도 미드아크샨
-
토익 얼마정도떠요
-
진짜 새내기때 사겨야됨 16
그때가 진짜 손만 스쳐도 ok설렘인 시기라 조금만 자기관리해도 연애하기가 쉬움...
-
미치겧다왜그러니
-
제발
-
진짜너무기엽다
-
인증글을 올리고 달리는 댓글 유형이 1.ㄱㅁ<<<평타거나 평타 이상...
-
거의 다 들어온거라도 봐도 ㄱㅊ?? 어제까진 한두명 오더니 오늘 내내 한명도 안들어옴
-
뭐 일케 불만이 많아
-
캬 역시 잼파파
-
제발
-
내가인증을안하니까 ㅅㅂ
-
자꾸 분위기 이러면 그냥 탈릅할까
-
기만이 아니라 팩트를 짚자면 진짜 어지간하면 사귐 물론 좋아하는 애를 사귀진...
-
나쁜새끼들아 나처럼 순수 외모로 좆박은 애들만 글 쓰라고.
-
에바임
pi/2 차이이면 곱이 -1이다... 처음 알았네요!
좋은 정보 감사합니다!
수직인 두 직선의 기울기의 합이 -1이다를 처음 알지는 않았을텐데요..
정확히는 (n+1/2)pi를 쓰려고 했어요. tan값과 그 그래프와 연결지으려는 생각은 깊게 하지 못했었다는 뜻이에요. 수직인 두 직선의 기울기의 곱이 -1인건 물론 기본적으로 알아야 하는 사실이고요.
와우 님 뭐꼬