칼럼6) 탄젠트 이모저모
탄젠트 함수의 성질 두 가지를 소개해드릴까 합니다. 오늘 내용은 가볍고, 나름 알려진 편입니다.
일단 문제입니다.
(당연히 자작! 제가 드리는 문제에서 기출이라고 따로 언급이 없으면 다 자작일거에요)
원래는 f(x) 정의역을 좀 달아줘야 하는데(x=pi/2, 3pi/2 ...에서 정의 안 됨 이런거요) 예제문제니까 패스했습니다. 가볍게 보이는게 아무래도 더 중요하죠(?)
아무튼 문제를 풀어보겠습니다. 우선 이 상황이 왜 결정되는지를 느껴야 해요.
이 문제뿐만 아니라 다른 수학 문제를 풀 때에도 마찬가지에요. 어떤 요인으로 인해 상황이 결정되었고, 자신은 계산만 하면 답이 원하는 값을 찾을 수 있다는 걸 늘 느껴야 합니다.
그림을 그려보겠습니다.
점 A의 위치가 정해지면 점 B의 위치는 자동결정입니다. A 위치에서 5pi/2만큼 오른쪽으로 간 곳에서 함수에 점 찍어주면 그게 B에요.
한편 탄젠트 함수는 pi만큼의 주기를 가진 함수입니다. 그래서 아래 그림처럼 5pi/2 차이를 pi/2 + 2pi로 인식해볼 수 있어요.
pi/2만큼을 먼저 이동해주면 A가 위치한 것과 같은 날개(?)에서 B'이 찍힙니다. 그리고 그거와 위상이 같게끔 2pi만큼 이동해주면 세 번쨰 날개(??)에 B가 찍혀요.
위상이라던가 날개라는게 수학적 용어는 아닌데요, 직관적으로 전달하기에 이만한게 없더라구요. 앞으로도 종종 이렇게 표현하겠습니다.
여기서 B'과 A의 관계에 주목할 필요가 있습니다. 탄젠트 함수에서 x좌표 차이가 pi/2라는 것은 특별하기 때문이죠. 이유는 다음과 같습니다.
각이 pi/2 즉 90도 차이 난다면 두 직선의 기울기는 곱했을 때 -1이 나오는 관계일 것입니다. 함수에서 이를 보자면
점 B' 그리고 점 B의 y좌표가 k파이라고 하면 점 A의 y좌표는 -파이/k가 됩니다. 이 함수는 pi tanx기 때문에 그냥 k,-1/k가 아니라 거기에 파이까지 곱해진 겁니다.
그런데 아직 상황은 결정되지 않았어요. 영상을 보듯이 다음 과정이 연속적으로 보였으면 좋겠습니다. a가 -pi/4와 0 사이를 오갈 때 점 A 위치가 각각 결정되고, 그에 따라 B의 위치도 결정되는... 그 모든 상황이 아직 가능해요. 아직 a가 결정되지 않았으니 당연히 상황은 결정되지 않았습니다.
그래서 조건이 하나 더 주어져 있습니다. 점 A와 점 B를 이은 직선의 기울기가 1입니다. x좌표 차이가 5pi/2일 때
y좌표 차이도 5pi/2여야 합니다.
답은 2가 되겠네요. A의 x좌표가 -pi/4에서 0 사이에 있기 때문이죠.
한편 첫 번째 줄에서 두 번째 줄로 넘어갈 때, 정석은 양변에 k를 곱한 뒤 이차방정식을 푸는 것입니다. 근데 그렇게 하지 않고 바로 2 혹은 1/2이라고 찾을 수 있었으면 좋겠습니다.
일단 이차방정식 꼴이 될 것이니 k 값이 오직 2개라는 걸, 또 두 근이 역수관계에 있을 수밖에 없다는 걸 안 상태에서 (1, -1, 0이 아닌 어떤 수 a가 위 식을 만족한다면 1/a도 만족할 테니까요.) k=2를 넣으면 만족하니까 1/2도 만족하겠네생각하고 찾아내시는 겁니다.
숫자도 맨날 나오는 거만 나와서 그렇게 부담되지도 않습니다. 이미 이렇게 많이들 하고 계시기도 할거구요.
한 발짝 더 나아가서
이런거도 이제 바로 다음이 보이면 좋죠. 물론 중요한 내용은 아니고 그렇게 많이 나오는 계산도 아닙니다. 소소한 팁 드린거에요!
다시 본론으로 돌아가겠습니다. 삼각함수 문제는 주기와 대칭이 전부 아니냐고 말하신다면 .. 맞는 말이긴 합니다. 그런데 가끔 tan 문제에서 주기와 대칭 이외의 성질 두 가지를 묻기도 하더라구요. 지금까지는 그 성질 두 개 중 첫 번째를 소개드린겁니다.
tan 함수에서 x좌표 pi/2차이 -> 함숫값 정보 도출 가능
평가원에 나올 확률이 높냐고 묻는다면.. 전 낮다고 봅니다. 하지만 이 내용 자체로 좀 생각할 거리가 있고, 1년 내내 n제와 사설에서는 종종 보실 거기 때문에 소개드려봤습니다. 두 번째 성질도 마찬가지에요!
그 두번째 성질도 우선 문제로 소개해드리겠습니다.
(내리면 답 스포)
답은 4입니다. 풀이는 따로 없는데 방금 못 푸셨더라도 아래 내용 읽어보시면 스스로 푸실 수 있을거에요.
탄젠트 곱이 -1일 때 두 각 사이의 관계도 존재하지만, 탄젠트 곱이 1일 때에도 관계가 존재합니다.
곱이 1이라는 건 두 기울기가 역수관계에 있다는 것인데요,
역수 관계에 있다면 둘은 y=x에 대해 대칭적으로 그려집니다.
기울기 n, 그리고 1/n인 함수를 볼게요.
기울기가 n이라는 건 x좌표가 1 증가할 때 y좌표가 n 증가하는 것이고
기울기가 1/n이라는 건 y좌표가 1 증가할 때 x좌표가 n 증가하는 것이기에
둘이 y=x에 대해 완전히 대칭적인거죠.
즉, 두 각의 평균이 pi/4라는 겁니다.
(둘 다 동경을 예각으로 표현했다고 했을 때요.)
탄젠트 함수에 이를 나타내어보면
x축에 제가 pi/4, 그리고 등간격 표시를 해놨습니다. 어떤 의미인지 이해가 가실거라 생각합니다.
알려드린 두 성질을 tan 함수에 다 표시해보겠습니다.
tan 함수와 y=1/n 그리고 y=-1/n의 교점은 원점에 대하여 대칭일테니까 x좌표가 완전히 뒤집힌 것도 보입니다.
이 두 가지 성질 외에는 전부 주기와 대칭으로 끝날 겁니다. 평가원은 아마 주기 대칭으로 끝나게끔 문제를 낼 거 같지만 그럼에도 알려드린 이유는... 위에 말씀드린대로입니다 ㅎㅎ
준비한 내용은 여기까지입니다. 혹시 원하시는 주제 있다면 댓글로 언제든지 자유롭게 요청해주세요!
좋아요 부탁드리고, 팔로우해두시면 앞으로 나올 좋은 칼럼들을 놓치지 않고 확인하실 수 있습니다.
0 XDK (+1,000)
-
1,000
-
아 ○○ 6
[서술형] 빈칸에 들어갈 말로 옳은 것을 이유와 함께 쓰시오.
-
ㅇㅇ…
-
제발기사없으면예상시간좀빨리띄우지말아주라... 그냥40분을또늘려버리네...
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ시발할복
-
고요하다 18
너무 좋아
-
14132인데 0
수학 수능 직전 실모들(의미 없는거 앎)에서 2도 뜨고 했는데 국어 망한줄 알고...
-
뭐 저는 2025수능 미적80따리긴 하나 올해 수학 시험의 전반적인 경향과 입시...
-
04년생 최고 아웃풋 29
은 유리아
-
예나 2
잘자..
-
점심시간 때 교복 입고 가볼까
-
원래 맨날 절전모드 키고 사는데 푸니까 화면전환 부드러움이 말이 안됨요 이런이런 느낌이 아니었는데
-
있음? 속이는사람만있는..
-
마닳 사서 풀려고하는데 마닳은 가장 최신기출부터 있던대 그냥 순서대로 풀면 될까요?...
-
???
-
뻥임뇨
-
우우우우우우우
-
하....
-
위 사진이 22수능 지구 1컷 43 아래 사진이 25수능 지구 1컷 44? 20문제...
-
작수 44434 올해 41341 미적분 4->1로 올린 걸로 과외 해보고 싶은데 가능 하려나요?
-
ㅈㄱㄴ
-
패오엑2도 해야되고 강연금도 다시 정주행해야되고... 재시만걸리지마라
-
나 올 때까지 폰하다가 나 들어오면 잤음 문제는 나 시험기간 때 들어오던 시간 새벽...
-
비틀비틀 3
삥글삥글
-
아 자기 싫다
-
15만덕 펀딩해주실분 11
사유 : 방금 닉네임바꿨는데 맘에안듦
-
지금까지 본 수능 중에서 원서 영역에서 맨날 예비 앞에서 짤리고... 올해는 진짜...
-
정담온 선생님꺼 들어보려고 하는데 어떠나요..? 이번 가갸거겨고교에서 나왔던...
-
슈냥의 25수능 출사표
-
ㄱㅇㅇ ㅇㅈ 7
-
고민되는시점에닥치고메디컬가라
-
아 2
이우에오
-
망햇다
-
쪽지좀요
-
또 나만 왕따지
-
뭐임?
-
딸치고 자야지 1
-
생1 도긩이 3
고3때 들었던 도긩이 스킬 체화하고 도긩이 인강판에서 사라진 뒤에 3년 동안 다른...
-
인설약 설공 4
취향차이임?
-
반성하겠습니다 12
요즘 오르비에 소홀했군요.. 하루에 10분정도만 하다니..
-
사랑했었어 후회 없는 사랑을 했어~~~
-
죽을거야 4
인생이 망하고말거야 이번학기도 또 학고받고말거야
-
키 크고 싶다 13
우유 열심히 마시면 클 수 있겠죠????
-
모아나1이 넘 재밌기도 했고 2는 넘.. 뻔했음 걍.. 싱겁게 끝나기도 했고
-
그냥고민 0
사실 그냥 진짜 요즘 드는 고민 생각들 자초지종 늘어놓은.. 07현역인데 내신...
-
2시 22분 0
수.갤의 2시 22분 7ㅔ이가 떠오르는 밤이군요
-
ㅇㅈ 1
재탕조이고
-
진짜 잔다. 0
자라. 캬캬.
-
ㅇㅈ 6
걍 많이는 안 못생긴 비실이임 머리 기르는 중임
-
어그로 ㅈㅅ띠 본인 꿈이 제약회사쪽인데 의생명융합학과랑 생명과학과 중에 어디를 가는...
pi/2 차이이면 곱이 -1이다... 처음 알았네요!
좋은 정보 감사합니다!
수직인 두 직선의 기울기의 합이 -1이다를 처음 알지는 않았을텐데요..
정확히는 (n+1/2)pi를 쓰려고 했어요. tan값과 그 그래프와 연결지으려는 생각은 깊게 하지 못했었다는 뜻이에요. 수직인 두 직선의 기울기의 곱이 -1인건 물론 기본적으로 알아야 하는 사실이고요.
와우 님 뭐꼬