1000덕) 수2 자작 ㄱㄴㄷ 문제
<나중에 다시 해 보겠습니다. 죄송합니다.>
그냥 일반적인 내용입니다. 문제 특징 때문 14번에 넣기에는 애매하긴 하네요.
반례 같은 거 꼼꼼하게 따져 보세요!
최초로 맞게 풀고 설명까지 제대로 하시는 분께 1000XDK 드리겠습니다! (이미 아시는 분들 제외)
(주관적) 난이도 : 3.5/10 (였는데 헷갈리는 건 저도 인정합니다...)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2칸 스나 0
24명 뽑고 103명 지원 점공 23/40 연고 공대인데 가능성 있을까요? .....
-
지금 확통 쎈b 푸는데 기초실력 기르기에 좋은것같아서 수1수2도 쎈b 사서 풀까요?...
-
1. 생지러들은 의치약수+sky공대를 가기 위해서, 또 생1지1는 표점 방어도 돼서...
-
아 똥 존나쌌다 8
시원
-
김승리 커리 타는 중입니다 화작 내신이 1학기에 있어서 화작을 겨울방학에 할...
-
화장실 갔다오는데 둘 중 한 명이 siuuuuu 외치면서 스카에서 나오다가 날...
-
그래도 21수능 물2처럼 블랭크는 안떴잖아 한잔해~
-
섹드립 여러번 썼고 11
스바 메인도 여러번 갔는데 하 이번엔 왜 50점 먹엇지 고민해봐도 차이점을 모르겟어...
-
서로 서로 써줘봅시다! 은근 재미있다구!
-
컨셉 지겹네 1
안녕하세요 전 사실 또치가 아닙니다
-
ㄹㅇ
-
육개장 1
-
좀 그래
-
어지간해선 인강 보지 말고 독학+현강하셈 인강수강생들 생각보다 수학 꽤 못해서...
-
당장 버리길 열심히 공부했으면 7-80퍼센트는 늘 먹던맛, 당해년도 6.9변형,...
-
ㄴ몰 너무 어려워서 몰티져스땡김
-
일은 시발같이 시키면서 월급 하루 이틀 매 달 쳐밀리네 개새끼들이
-
2시간전에 헌혈해씀
-
라는 미친 생각을 해보았서요.
-
. 2
배고픔
-
옆자리 대화 개어지럽네 대단한 인생을 사시는듯
-
마! 상남자 아잉교!
-
다닐수도 있을 것 같아서요..!!
-
동아리활동, 과생활도 다 하고!!!! 학점도 잘따고!! 진자 갓생살아야할듯
-
뭐야 뭐야! 2
다들 왜 이렇게 착해! 옯뉴비의 소원 하나가 성취되었자나! 이 모든 영광굴비를...
-
아 답답해 0
키배는 뜨면 안 되겠다
-
제가 이번수능 국수 표점 134 134 영어 2였거든요 만약 여기서 제2외 2등급...
-
최초합 가능? 2
1. 2.
-
https://orbi.kr/00071108764/%EA%B0%90%EC%9E%90%...
-
질문 받아요! 4
-
나도안받는데 이거 받으면 좀 간지템임??
-
착상난교파티 8
룰루
-
화작 만점이나 한 개 틀리고 확통 1컷 받고 영어 1 정법 사문 만점 1컷 받으면...
-
뭐로 닦아야함요? 양말? 손? 그냥 안닦아?
-
1년내내 1등급이엇는데..
-
국어로 대학감 ㅇㅇ 수학 다 하면 악착같이 국어하세요
-
재작년 6평 때까지만 해도 경■식 보도 나온다는 사람 거의 없었음 -> 진짜로 나옴...
-
이번에 예년보다 추합 많이 돌거라고 행복회로 돌리는 중임 1
점공 보면 그래보임 근거1 내 앞사람들 중에 1순위로 선택한 사람이 별로 없음...
-
개노답 5형제 7
ㅅㅂㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
낮술 5
보드카 마티니 올리브는 고양이가 물어갔어요
-
1. 필기노트에도 대표예제같은거 잘 정리되어 있나욮 2. 필기노트 없이 본교재만...
-
하지만 난 글 쓸 소재가 없는걸... 고능아도 아니고... 연애 썰도 없고......
-
라는 영상이 있던데 좀 신기하네요 그렇다고 막 강요는 안하시던데
-
효과 뭔가 없어보이는데 생각보다 도움됌 구체적으로 할수록 좋긴함 국어때 긴장안한게...
-
메인을 저런걸로 두개보낸다고
-
실지원인증 빨리 해달라고!!!
아마 실전에서는 이렇게 해서 ㄱㄴㄷ 하지 않았을까...
으음... ㄴ이 문제인 걸까요... g(alpha)가 0이 아니라면 g(alpha)는 양수이거나 음수인데...
f(x)가 극값이려면 애초에 g(x)의 부호 변화가 생겨야 하는데... g(alpha)가 0이 아니라면 x = alpha에서 부호변화가 생길 수 없으니 극값도 없다고 판단한 거였는데... 뭐가 문제인 걸까요.
그리고 ㄷ에 제시하신 저 함수는 만족 안 하는 걸로 보이네요
그러면 답이 ㄱ ㄷ인 건가요? ㄴ을 어떻게 판단해야 하는 건지 잘 이해가 안 되네요...
근데 ㄴ에 저 집합기호는 교집합 기호 아닌가요...?
그러면 주어진 범위는 공집합이 되는데요...
아 뭐야 잘못 입력했어요 ㅠㅠ
ㄱ,ㄷ인가요?
아 ㄷ이네요ㅜㅜ
연속이 미분가능성을 보장하지는 않으니까요..?
g(x)가 존재한다는 건 미분가능하다는 의미긴 해요
다만 미분계수 정의가 극한으로 정의돼 있기 때문에 g(x)의 '극한값'만 존재하고 함숫값이 이와 달라도 g(x)가 미분가능한 함수의 도함수가 될 수 있어요
도함수는 한 점에서만 불연속일수는 없지 않나요?
그리고 g(x)가 어떤 함수인지 알기 전까지는 g(x)의 존재가 g(x)의 실수 전체집합에서의 존재를 보장하지는 않지 않을까요? 예를 들면 알고보니
g(x)가 무리함수인 경우가 있을 수 있을 것 같아요
도함수는 몇 개의 점이든 불연속일 수 있으며, 극한값만 존재하면 원래 함수는 미분가능합니다. 이것은 논술과 임용고시에서 출제되는 소재라고 합니다.
f(x)가 실수 전체 집합에서 정의된 함수인데 모든 실수 x에 대해서 저 식을 만족시키는 g(x)의 정의역이 모든 실수가 아니면 모순이지 않나요?
제가 든 무리함수 예시는 오류가 맞네요..
다만 제가 말씀드리고자 하는 것은 도함수는 극한값이 존재하는 어떤 점에서 함수값만 그 점에서 다를 수는 없다는 거예요
아 그렇네요 도함수가 그 점에서 값이 존재하지 않는 경우 갖고 생각하다가 잘못 생각했나 봐요