수학 미적 킬러 질문
![](https://s3.orbi.kr/data/file/united/4a3ea28ba5c5e31d1e3e4d80b4f5d5f2.jpg)
![](https://s3.orbi.kr/data/file/united/696d597cce98da6038c1a74f0507f790.jpg)
수학 미적분 킬러 두문제 어떻게 손댈지 몰라 고만중입니다.설명해 주신다면 감사하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미적만 사볼건데 얼마나 됬나요??? 기출만 새로들어온 정도인가요???
-
경한 인문도 보면 그 많던 588 587 표본들이 안 보이네요 근데 올해 과연...
-
나도 빨리 홍뱃 내놔 일해라 관리자야
-
시대 재종 인문 0
확통사탐반은 한개인가요? 대치시대요!
-
대학교 합격하고 오르비에서 놀 줄 알았는데 다 과외준비 / 칼럼작성하네 ㄷㄷ..
-
궁금한게 많은데 재학생 계신가요오...
-
짐심 ㅇㅈ 2
라볶이 만들어 먹음
-
저녁에 다시 올께..
-
뉴런 이전 수분감 하긴 했는데 수분감이 좀 컴팩트한 감이 있어서 한완기 하고 n제할까 고민중입니다
-
거기 여자10번이 자기는 키큰남자가 오히려 싫고 자기보다 키 작아도 좋으며...
-
실제 지원 대학 리스트에서 합불 표시나 예비 몇번 받았는지 등록 안 한사람들은 보통...
-
이거 요망함 0
아무튼 그럼
-
얼부우기 3
안뇽
-
미적 만년3뜨다 확통으로 넘어갔는데 생각보다 1-2표본이 없는 것 같ㅇ아서요. 그게...
-
치과왔다 3
교정은언제끝나는걸까
-
ㅇㅇ
-
ㅇㅂㄱ 2
-
집에서 동생만 좀 작았는데 병원가서 검사했더니 지금부터 최대한 커도 177이래...
-
저 왔어요⭐️ 5
-
4수는 부러워서 안됨
-
떡꾹 끓일 때 1
물 끓이고 떡을 넣나 떡 넣고 물을 끓이나
-
살기싫다 0
뭘 해야하냐 진짜
-
이게 사투리였구나 근데 나 전라도 살아본적도 없는데ㅋㅋ 이게 전라도 말이구나 근데 워낙 유명해서
-
누가누가 잘찍나 4
직업의 자유에 대한 설명으로 옳지 않은 것은? (다툼이 있는 경우 판례에 의함) ①...
-
제발출근하게해다오
-
485일 9
남은 수감일
-
서울대 지역균형 정시 합격이면 고등학교에 연락해야 하나요? 2
따로 학교장 추천 적어준 학교에 알려야한다거나 상호작용해야하는게 있을까요?
-
심찬우 문학 0
문학 책 아직 안왔나요 ?? 생각하며 읽기여
-
itm학과 교수님 연구실에 있는 학부연구생 아웃풋입니다~ 해외 대학원 박사로도 자주...
-
방학동안 알파테크닉 수1,2 2회독 생각의 질서 미적분 알파테크닉 미적분 2회독...
-
펑크가 아니라 의반들 시험만 보고 빠져서 다같이 점수만 낮아진거로ㅋㅋㅋ
-
어캄? 원래 이 난이도였나 하 70점 못넘길거같은데
-
2월달엔 독서 할게 없는데 뭘 하면 좋을까요
-
메디컬에 인서울상위권 대학이 널렷는데 어느 대학이든 대학합격글 올라오면 다들 진심으로 축하해주는듯
-
현역 사설 응시 2
현역 고3입니다. 현역이 현장에서 응시할 수 있는 사설 모의고사는 없을까요?...
-
남자 공대 여자 예체능 이런거면 사귀기 빡셈?
-
보통 한의대 노리고 가는걸까요?
-
사실이 믿기지가 않음 고뽕 치사량인데 이거 언제쯤 없어짐.. 지금 한시간마다 합격증...
-
대학영어 2
제 과의 커리큘럼을 보니까 대학영어가 필수인데 많이 어려운가요 ..? 수능 영어...
-
알고리즘으로 윤도영 영상 떴는데 갑자기 궁금하네 찾아봐도 안 나오기도 하고
-
새기분 독서 고민 중 인데요 강기분 독서는 개학 전 완강 예정입니다 독서도...
-
과탐 선택 질문 1
물리를 하면 무조건 망하나요??
-
안녕하세요 '지구과학 최단기간 고정 1등급만들기' 저자 발로탱이입니다. 지난 1년간...
-
수학으로 최저 0
수학으로 최저 준비할 때 쎈B 한번씩 풀어보는거 ㄱㅊ나요 기출 돌리기 전에 함 할까싶은데
-
?
-
우웅
-
제주대학교 수의예과 25학번 새내기를 찾습니다! 안녕하세요, 25학번 신입생...
-
어그로 죄송합니다 국가장학금 총액 191만 나왔는데 국가장학금이 갑자기 많이...
-
전기장판키고이불덮고낮잠때리고싶다
19년 21번인줄
그거 보고 만든듯
위에 문제는 그거 참고하면 풀이에 도움되긴 할 듯
위에 문제는 대충 끄적여봤는데 절댓값 풀어줘서 구간별 함수로 놓고 구간별로 미분해본다고 치면 미분 불가능한 지역이 인수가 1개나 2개로 만날때는 미분 불가능하고 3차부터 미분가능해서 그거 토대로 함수 그리면f(x)가 x(x-a)^3꼴인 함수구나 인걸 알 수 있어서 그렇게 되면 나머지조건 다 풀리고 어디쪽이 3차로 접하는지에따라 2가지 케이스로 나뉘어서 풀리더라구여!
좋은 답변 감사합니다. 답변해주신 내용에 따르면 f(x)-t=0 일 때 인수가 3개 이상이어야만 그 지점에서 미분 가능하다고 하신 것 같은데 혹시 그걸 어떻게 확인할 수 있을까요?
f(x)가 t보다 큰 상황인 루트 {f(x)-t}를 미분하면 f'(x)/2루트{f(x)-t}
반대로 t가 f(x)보다 큰 상황일때는 -f'(x)/2루트{f(x)-t} 이 둘을 비교할때 만약 t에서 f(x)가 x=k에서 접한다고 가정한다면 (x-k)^2을 인수로 가지는데 그렇게되면 분자 f`(x)도 x-k인수 1개, 아래 분모 루트 식도 x-k인수 1개라
양 구간 식을 x가 k에 한없이 다가갈때 비교해보면 (lim 극한식 좌극한 우극한 비교하는거에요!) A를 0이 아닌 상수라고 치면 A랑 -A가 나와서 x=k에서 미분 불가능하고 이를 0으로 만들어 미분 가능으로 만들려면 x-k인수 3개부터 가능함을 알 수 있어요!
답변 감사합니다. f(×)-t 의 인수가 2개라면 좌극한,우극한 모두에서 f(x)-t>0 또는 <0 아닌가요?
엄..아님 루트x^2그래프 생각해보셔도 좋을것같아요 루트x^2그래프는 절댓값 x랑 같잖아요? x=0에서 미분 불가능하고 이게 왜 그러냐면 루트 x^2 미분하면 2x/2루트 x^2인데 이게 우극한(0+)에선 루트x^2이 +x로 나오고 분자랑 약분되어서 1이고 좌극한(0-)에선 -x로 나와서 분자랑 약분되면 -1이니깐 우극한 좌극한 달라서 미분 불가능해요!
#2
주어진 극한식을 변형해보면 다음과 같습니다.
(f(f(x+h))-f(f(x)))/(f(x+h)-f(x))*(f(x+h-f(x))/h-(f(f(x)+h)-f(f(x)))/kh*kh/h
이를 말로 표현해보면 x=a일 때 각각이 수렴한다면 p*q-r*s 꼴입니다.
p: y=f(x)의 x=f(a)일 때의 미분계수
q: y=f(x)의 x=a일 때의 미분계수
r: y=f(x)의 x=f(a)일 때의 미분계수
s: 항상 k로 수렴함
따라서 주어진 극한이 수렴하기 위해서는 p, q, r 모두가 수렴하거나 직접 좌극한과 우극한으로 나누어 계산한 pq-rs값이 (엄밀히 말하면 수렴할 때 p, q, r, s가 되는 극한식의 좌극한과 우극한을 통해 계산한 결과값이) 일치해야합니다.
f(x) 식을 정리해보면 다음과 같습니다.
f(x)=2^(-2)*ㅣ2^(2x-a)-2^xㅣ
=2^(-2)*ㅣ2^x*(2^(x-a)-1)ㅣ
=2^(-2)*ㅣ2^xㅣ*ㅣ2^(x-a)-1ㅣ
=2^(-2)*2^x*ㅣ2^(x-a)-1ㅣ
=2^(x-2)*ㅣ2^(x-a)-1ㅣ
따라서 f(x)는 x=a에서만 미분 불가함을 알 수 있습니다.
i) p, q, r 각각이 수렴할 때
f(x)는 x=a에서 무조건 미분 불가하므로 해당 경우는 존재할 수 없습니다.
ii) 직접 계산해봤을 때 성립
미분 불가할 것 같은 상황을 미분 가능하도록 해야하므로 직관적으로 안될 것 같은 x=a일 때부터 생각해봅시다. 이제 p, q, r, s를 수렴하는 값이 아닌 해당 식으로 바라봐봅시다. p(x), q(x), r(x), s(x)라 바라봐도 좋겠습니다.
ii-1) x=a일 때 h->0+
p: y=f(x)의 x=0일 때의 우미분계수
q: y=f(x)의 x=a일 때의 우미분계수
r: y=f(x)의 x=0일 때의 우미분계수
s: k
ii-2) x=a일 때 h->0-
p: y=f(x)의 x=0일 때의 우미분계수
q: y=f(x)의 x=a일 때의 좌미분계수
r: y=f(x)의 x=0일 때의 우미분계수
s: k
ii-1) x=a일 때 h->0+
p_1: ln(2)*(2^(-a+1)-1)/4
q_1: 2^(a-2)*ln(2)
r_1: ln(2)*(2^(-a+1)-1)/4
s_1: k
ii-2) x=a일 때 h->0-
p_2: ln(2)*(2^(-a+1)-1)/4
q_2: -2^(a-2)*ln(2)
r_2: ln(2)*(2^(-a+1)-1)/4
s_2: k
이제 p_1*q_1-r_1*s_1=p_2*q_2-r_2*s_2를 정리해보면
ln(2)*(2^(-a+1)-1)/4*2^(a-2)*ln(2)=0
<=> (2^(-a+1)-1)=0
<=> -a+1=0
<=> a=1
임을 알 수 있습니다.
a=1임을 활용해 f(x) 식을 정리해보면 다음과 같습니다.
f(x)=2^(x-2)*ㅣ2^(x-1)-1ㅣ
이제 또 미분 불가할 것 같은 상황을 미분 가능하도록 하기 위해 직관적으로 안될 것 같은 f(x)=1일 때를 생각해봅시다. a=1이므로 지수방정식을 풀어보면 f(x)=1 <=> x=2입니다.
ii-3) x=2일 때 h->0+
p_3: y=f(x)의 x=1일 때의 우미분계수
q_3: y=f(x)의 x=2일 때의 우미분계수
r_3: y=f(x)의 x=1일 때의 우미분계수
s_3: k
ii-4) x=2일 때 h->0-
p_4: y=f(x)의 x=1일 때의 좌미분계수
q_4: y=f(x)의 x=2일 때의 좌미분계수
r_4: y=f(x)의 x=1일 때의 좌미분계수
s_4: k
ii-3) x=2일 때 h->0+
p_3: ln(2)/2
q_3: 3ln(2)
r_3: ln(2)/2
s_3: k
ii-4) x=2일 때 h->0-
p_4: -ln(2)/2
q_4: 3ln(2)
r_4: -ln(2)/2
s_4: k
이제 p_3*q_3-r_3*s_3=q_4*q_4-r_4*s_4를 정리해보면
3/2*(ln(2))^2-(k/2)*ln(2)=-3/2*(ln(2))^2+(k/2)*ln2
<=> 3*ln(2)-k=-3*ln(2)+k
<=> k=3ln(2)
이제 k값을 하나 더 찾아야할텐데 문제가 될 만한 곳은 문제에 주어진 a값에 대해 x=a일 때와 f(x)=a일 때 (각각 x=1일 때와 x=2일 때) 라서 이미 다 본 상태이군요.. 실수가 있었는지 살펴보고 올게요
#1
y=sqrt(ㅣf(x)-tㅣ)는 y=sqrt(ㅣxㅣ)에 y=f(x)-t가 합성된 형태로 바라볼 수 있습니다. p(x)=sqrt(ㅣxㅣ)와 q(x)=f(x)-t에 대해 y=p(q(x))의 미분가능성을 생각해봅시다.
p(x)는 x=0에서만 미분불가하며 q(x)는 실수 전체의 집합에서 미분가능합니다. x=a에서의 p(q(x))의 미분가능성을 조사하는 식을 미분계수의 정의에 따라 작성해보면 다음과 같습니다.
lim h->0 p(q(x+h))-p(q(x))/(q(x+h)-q(x))*(q(x+h)-q(x))/h
x=a일 때 각각이 수렴한다면 r*s꼴이고 이때 r, s는 다음과 같습니다.
r: p(x)의 x=q(a)일 때의 미분계수
s: q(x)의 x=a일 때의 미분계수
y=p(q(x))가 미분가능하지 않을 때를 알아보려면 p(x)의 x=q(a)에서의 미분계수가 존재하지 않는, 즉 f(a)-t=0일 때를 생각해봐야합니다.
y=sqrt(ㅣf(x)-tㅣ)는 다음과 같이 구간 별로 식을 작성해볼 수 있습니다.
y=sqrt(f(x)-t) (f(x)-t>=0)
y=sqrt(-f(x)+t) (f(x)-t<0)
또한 '구간 별 함수의 미분가능성'을 이용해 각 구간에서의 도함수를 구해보면 다음과 같습니다.
dy/dx=1/(2sqrt(f(x)-t))*f'(x) (f(x)-t>0)
dy/dx=-1/(2sqrt(-f(x)+t))*f'(x) (f(x)-t<0)
x=a를 포함하는 적당한 열린 구간을 두고 생각해볼 때
y=f(a)가 y=t를 뚫는다면 (f(x)-t가 x-a 인수를 하나 갖는다면) p(x)는 미분가능하지 않을 것입니다.
y=f(a)가 y=t에 튕긴다면 (f(x)-t가 x-a 인수를 둘 갖는다면) p(x)는 미분가능할 것입니다.
y=f(a)가 y=t를 부드럽게 뚫는다면 (f(x)-t가 x-a 인수를 셋 갖는다면) p(x)는 미분가능하지 않을 것입니다.
y=f(a)가 y=t에 튕긴다면 (f(x)-t가 x-a 인수를 넷 갖는다면) p(x)는 미분가능할 것입니다.
따라서 우리는 y=sqrt(ㅣf(x)-tㅣ)가 미분 불가할 때가 다음과 같음을 알 수 있습니다.
i) f(x)-t가 x-a 인수를 하나 가질 때
ii) f(x)-t가 x-a 인수를 셋 갖고 f'(x)=/0일 때
(가)에서 f(0)=0, g(0)=1임을 활용
f(x)=ax^3(x-4b) (a>0, b=/0)일 때 y=sqrt(ㅣf(x)ㅣ)는 x=4b에서만 미분 불가하므로 g(0)=1을 만족합니다.
f(x)=ax(x-4b)^3 일 때 (a>0, b=/0) y=sqrt(ㅣf(x)ㅣ)는 x=0에서만 미분 불가하므로 g(0)=1을 만족합니다.
이때 g(-27)=1임을 활용 -> f(x)의 극솟값이 -27이어야함 (이 부분을 설명 못하겠는데 이거 아님 안되지 않을까.. 싶어서)
-27ab^4=-27 <=> ab^4=1
-3ab^4=-27 <=> ab^4=9
(나) 2g(1)=4b or 2g(1)=0
g(1) 값은 위의 두 상황 모두 2이므로 b=1
따라서 a=1 or a=9 이고
f(x)=x^3(x-4) or f(x)=9x(x-4)^3
따라서 f(5)=125 or f(5)=45
f(5)값의 합은 170
ㄷㄷ