2022학년도 고3 10월 미적분 30번 해설
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
최미성선생님 0
한테 배워보고 싶다..
-
형일하고올게 3
재밋는글써놔
-
12월부터 애들이랑 술 먹어보고 놀다가~ 울다가~ 1월 중순 재수학원 들어감...
-
지금 점수로 상처받고 또 성적표 나와서 2차로 상처받는 짓은 하고싶지 않아요 입시?...
-
과탐 선택 체제에선 차례가 오지 않을 것이니까 ㅎㅎ
-
ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ...
-
내 인생 책 4
캬 ㅋㅋ
-
23수능때 강민철 풀커리타서 모든 사설 고정1나왔었음 근데 국어 기조 바뀌고 머리...
-
쓰리건대 ㅁㅌㅊ 9
-
80일가능성있나요? 진학사에는 그렇게떠서요…
-
무슨메타인데요 15
알려는줘야지
-
별로
-
명작 만화 0
유일하게 결말까지 만족스럽게 본 우라사와 나오키 만화
-
짠가요?
-
안돼 5
휴일이 8시간밖에 안남았다고
-
두가자
-
고2분들 2
2025 강기분 수강하신분들 2026 강기분도 들으실건가요? 시대현강도 다닐거라...
-
3목표면 걍 상반기때는 단어벅벅이 마즘? 문제풀이 효과,효율이 영 안나는 기분임...
-
의사 전공의 1-2년차 잡을 치대 본3-4에 정해진 시스템 없이 압축적으로 하는...
-
수능대비로 괜찮나요???
-
생각보다 잘살아요 문과쪽취업 많이들 걱정하시던데 일단 대기업은 정말 잘갑니다...
-
학교에서 썩을때는 학교에있는 시간이 지옥같았는데 재수하고나니까 ㅅㅂ 아침하고 밤이 제일 힘듬
-
고2 모고 4-5 뜨는데 추천해주시면 감사하겠습니다!
-
마음껏 취향 공개하고 가세요! 저는 누가 뭐래도 인생 애니는 짱구라고 생각합니다!!
-
사탐은 노잼이라 과탐할건데
-
그냥 아예 투과목해서 물2지2를???
-
을왕리에 놀러왔어용 12
-
우리 라고 표현하는거 보면 이년도 깽판에 가담했다는건데 제발 법적 처발좀 제발...
-
내 글도 한 번 올려봐 20
메인 가보자고
-
드릴 확통 풀다가 문제 좋아서 드크북 샀는데 드크북이 훨씬 쉬운데 이거 원래 이런가,,,
-
장발 하고 싶네 7
머리 꽤 많이 길렀는데 장발한다면 1. 슬릭백 2. 똥머리 3. 그냥 생머리 4....
-
수학1,2 질문 2
내년에 고2인데 수학 1,2 아예안해놔서 방학때 미리해야하는데 수학1이랑 2...
-
ㅉㄸ는 걍 이시기에도 국어벅벅해야함? 술마시러 부르는사람도없고 에휴
-
석션못한다고 석션에 관한 자세에 대해서 레포트쓰라고 레지들이 지랄하기라도 하냐,...
-
여자되기1일차 8
여자앉기 성공
-
뭐 꿀이라더라 하면서 매년 과목을 바꿈 1년안에 고인물이 될 만한 학습력은 없음...
-
매일 씻어서 아무리봐도 이게 정배 같다
-
피오르 크럭스 2
둘 다 성적 낮아도 컨설팅 되나요?
-
아----- 0
-
의대 아직 좋음 2
군대 현역으로 다녀오고 6년 졸업즉시 로컬나가서 “자영업“ 하듯 일하면 한 8년...
-
팀들 보니까 역대급 자강두천 또 갱신할 거 같은 로스터들임
-
한양대 논술 오후1 34
8 50, 4495루트2 못풂 2 3p/2 루트15/4 1-2랑 2-3 저랑 같으신분 계신가요ㅠㅠ
-
성적이랑 가치관 둘 다 씹고트 실수 그 자체의 삶임 나도 창친이 누님처럼 갓생 살아야겠다
-
1. 딱히 공대에 큰 꿈없고 학교 로드만 따라가고 대기업 취직하고싶다=>전전이 이...
-
물리 1 솔직히 꼴림 24
다른 과목 문제는 보면서 머리 아픈데 물리1은 그림만 봐도 침 고임 정상임?
-
문과애들은 걍 대학낮추고 공대오면 될걸 자기가 대학간판땜에 문과와놓고 왜...
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)