수학 직관
예룰 들어 도형을 보면 이건 직각이잖아 딱봐도.. 이런거인가요?..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅈ된건가요 ㅠㅠ 쌤들이 뒤애 붙이라던데 잘 안떼져요 ㅠ
-
불영어 다 덤벼 0
영어 실모 독해 45분잡고 연습했다 다 들어와
-
어떤가요
-
4연짝 레전드네 1
-
아 진ㅁ자 0
짝수형 ㅅㅣ발아 +이거 영어듣기 1번부터 순서대로 푸는 문제까지 싹 바뀜?
-
승자겠죠??? 산책좀 하면서 긴장좀 풀어야겠다
-
마지막 실몬데 상상 다 반응이 안 좋은 거 같네
-
이거는 따로 분석은 안해봤는데
-
근데 거리가 40분 거리인ww
-
아니면 그냥 하던거 총정리나 할까
-
수능 전날인데 ㄹㅇ 공부 손에 안잡히는 거 나만 그래? 벌써 수험표 이벤트...
-
화작 미적 생지로 이상한오류없이 잘 나오긴했는데 짝수네...
-
인데 못가는게 아쉽다… 내일 당장 대학시험있음….. 슬퍼…
-
휴지 : 본래의 용도 외에도, 수평 안 맞는 책상 다리 밑에 끼워넣어서 안 흔들리게...
-
홀수형 0
너무 달달하고
-
ㄹㅈㄷ 선택과목 2
ㄹㅈㄷ
-
짝수형 답개수 0
짝수형도 1~5번 답개수 고르게 있나요?
-
아 씨발 0
이감 6-10 풀었는데 71점 나왔네 씨발ㅋㅋㅋ 어제에서 16점 떨궜네 엌ㅋㅋㅋㅋ
-
똑같다는거 오피셜인가요?
-
이런 조합이 왜 세상에 존재하는거지
-
도표나 내용 일치 문제도 섞음?
-
드가자 5
-
검정고시생이고 지금 일어나버렸는데 오후 1시까지는 할까요...?ㅠㅠ
-
편입 vs 재수 0
둘다 농어촌 되는데 지방대에서 재수가 나을까요 편입이 나을까요ㅜㅜ?
-
홀수형 ㅅㅅ 0
이제부터 찍기특강 벼락치기 간다!
-
다행히 어디서 쩍벌하고 다니진 않았는데 바로 버려야
-
지사대 가서 장학금 받고 다니라던.. 무시하고 지거국 쓰길 잘했지
-
수험표 ㅇㅈ 2
-
간격 넓어서 다리 떠는 사람 시야에 들어온 적은 없었는데
-
수능 때 가장 많이 하는 실수 top 5 + 예열 지문 1
1. 안 풀리는 거 붙잡고 늘어지기 국어는 시간 관리가 정말 중요하다. 지문 한...
-
1. 물리적 환경 정리 첫 번째 방법입니다. 몰입을 위해서는 책상 위 물리적...
-
작년 수학 미적같은거 보셈…짝수형이면 5번이 한개더라도 “짝수니까“가 되는데...
-
ㅇ ㅆㅂ 0
또 짝수야?
-
수능 신분증은 학생증으로 가져가도 되나요? 주민등록번호 있어야 한다던데 학생증은...
-
우와 그리고 짝수임
-
뭔가 잘 볼 수 있을듯!!
-
맨뒷자리 ㄱㅊ? 5
28번임
-
자리 0
학교 5분 자리 26번. 자리는 좀 손해인듯
-
ㅠㅡㅠ 빨리 받고싶어요
-
홀홀홀 2
캬캬캬
-
작수는 짝수+버스로 한 시간 거리였는데ㅋㅋㅋㅋ
-
아 ㄹㅣ발 짝수 1
-
하 또야
-
ㅋㅋㅋㅋ별 상관 없어도 기분 좋다
-
영어 짝수로 한번 풀어봐야되나
-
수험표 받는데 수험표 더미에서 봄
-
가채점 어떡할거 0
ㅈㄱㄴ
-
홀수11번이면 1
갠춘??
-
이정도면 운빨 나쁘진 않은가
-
중간이고 앞에서 세번째인데 어떨지 모르겟네요
수능수학에서 직관풀이!라는 말은
논리적비약이라는 말과 같습니다
당장 예를 들자면 14수능 30번문제
변곡접선문제가 있죠.
근거도 없이 그냥 거기다가 접선 띡 긋고
"여기서 교점갯수가 변하네~"이러는게
논리적비약이죠.
아 완벽히 논리적이진 않다 이거죠?..딱 이렇게 하면 이렇게 되겠네?..
완벽히까진 아니어도 최소한의
논리적 전개과정이 있어야하는데,
저 변곡접선은 그냥 아무런
근거도 없어요
논리적으로 확인해보니까
변곡접선에서 교점의 갯수가
바뀌는구나~가 아니라
변곡점에다 일단 접선긋고
짠 봐라 그래프그려보고 대충
접선그어보니까 교점갯수가
여기서 바뀌지?라고 풀이를
하는..뭐 이런거죵..!
그런데 변곡접선은 근거는 하나도 없지만
수능수학수준에서는 반례가 없는 것 같아요..ㅋㅋ
전 의견이 조금 달라서 직관이 논리적 증명의 첫걸음이라 보는 입장인데요, 아까 말씀힌신 변곡접선을 예로들면, 변곡점에서의 접선을 기준으로 접선개수가 달라진다는걸 알아야 증명을 할때, 변곡점에서의 접선을 기준으로 케이스 분류를 할 수가 있거든요. 그런 점에서 점 몇개 찍어보고 변곡점 접선을 기준으로 접선의 개수가 바뀔것이다 하는것을 캐치할 수 있는건 굉장히 훌륭한 사고방식이라고 생각해요. 엄밀한 증명을 요하는 해석학에서도 저는 그런 직관, 혹은 특수한 경우를 잡아 시각화 해 본 후에 그걸 증명하기 시작하거든요. 그런 점에서 그런 직관이 든다는건 수학적 센스가 있고, 그 직관이 맞다는 확신이 있으면 시험장에서는 그렇게 풀어도 된다고 봅니다.
그리고 변곡접선은 임의의 좌표위의점 (x,y)을 함수 위의 임의의 점 (t,f(t))의 접선의 방정식에 대입했을때, 방정식의 근의 개수를 구하는 식으로 증명할 수 있어요. 이러면 식이 정말 복잡해지는데, 이때 (x,y)가 변곡점위의 접선일 때 개수가 달라질 꺼라는 확신을 가지고, 일부러 식을 변형하면 식을 정리할수 있어요. (f(t)가 다함함수 일때)
댓글 잘 읽었습니다.
실은 저는 아직까지도 변곡접선이 논리적으로 모든함수에서 타당한지 잘 모르겠습니다.
분명 함수가 변곡점근처에서 요철이 변하기 때문에
그 점에서 접선이 그어지면 관통한다는걸 직관적으로는 알 수 있겠는데
과연 모든 함수에서 타당할까?라는 의문을 지울 수가 없습니다.
하지만 그런 반례가 있다하더라도 수능수학시험에 그런 반례인 함수가 나올 것이라고 생각하지 않고요.
다항함수야 님이 제시한대로 증명을 할 수 있겠지만,그밖의 모든 함수에서도 그걸 수식으로 증명할 수 있나요?혹시 가능하시다면 한수가르쳐주십시오.
당연히 모든 함수에서 성립하지 않아요. 간단하게 sin 함수만 생각해봐도 (0,2)에서 그을 수 있는 접선이 무한하거든요. 하지만 수능에선 이때까지 다항함수만 나왔고, 앞으로도 다항함수만 나올꺼에요. 모든 미분가능한 함수에 대해 성립하는 명제가 아니니까요.
심지어 변곡접선으로 안 풀고 그래프와 상수함수의 교점으로 풀리는데다가 풀이시간의 차이가 크게 없다는...
당연히여기서 최대... 아니면 예전에 공식처럼 증명한것도 시간이지나면 까먹어서 그런형태로남을수도있죠..
14수능 29번 같은경우도, 각의 이등분 선이 원의 중심을 지날꺼란 직관이 있으면 쉽게 풀리죠
직관으로 접근해서 논리로 풀어나가는게 이상적
그렇지만 논리적 근거를 잡고 푸는게 결국엔 도움이 되요
직관은 언제까지나 감이란거라서 직관으로만 고정100아닌이상 수능장가서 안보이면 슬프게됨
직관적으로 풀긴 푸는데 그걸 설명하라고 하면 논리적으로 백업이 가능한 정도. 그니까 경험+연습을 통해 그 과정이 너무나 당연해 지고 굳이 설명하지 않아도 되니 설명, 사고과정을 생략하다 보니 직관처럼 보이게 됨. 그게 직관아닐까요
딱 그런거 같아요. 증명하라하면 할 수 있을꺼 같은데 굳이 증명하기는 귀찮을 때 그냥 느낌으로 푸는 느낌?
직관 개중요함 문제많이푸는이유가이때문임
미분답이 웬만하면 극값의 x좌표나 변곡점의 x좌표 떄려 넣으면 나오는 현상이 직관의 대표적인 예 아닐까요?