칼럼) 무한등비급수의 승부처
무한 등비 급수.pdf
짧게 한 번 써보았는데, 사실 이 내용을 온전히 이해하면 굳이 책까지 필요없겠더라고요.
다른 도형 문제들에서도 저와 완벽히 같은 순서로 풀려고 노력하시면,
책이 없어도 되지 않을까 생각했고, 그에 맞게 정리했습니다.
S1을 구할 때
1) 도형의 성질을 뭘 써야 할지 모르겠을 때는 언제나 삼각비를 사용하자.
2) 이 넓이를 어떻게 구해? 싶을 떄는 넓이가 같은 '다른 부분'을 찾아서 구하자.
r을 구할 때
1) 도형의 성질을 뭘 써야 할지 모르겠을 때는 언제나 삼각비를 사용하자.
2) 두 번째 도형의 길이를 r을 사용해서 나타내자.
3) 칼럼에 나오는 분홍이와 파랑이의 겹치는 변을 찾아 승부처를 찾자
4) '어쩌고'와 '얼마'를 구하면 답이 나온다.
칼럼을 읽고 위에 나온 순서를 복습용으로 읽어주시면 됩니다 :)
별 내용없다고 느낄 수도 있지만, 사실 제가 알려드리고 싶은 가장 '정수'를 표현해본 것이니
주의 깊게 읽어주시길 바랍니다.
또한 이번 칼럼이 무등부의 첫 번째 칼럼이기에 문제는 한 문제가 들어있으나,
앞으로 다른 문제들의 풀이를 통해 언제나 제가 서술한 방법으로 문제가 풀림을 인지해주시길 바랍니다..!
이렇게 생각하면 좋은 점이 내 풀이의 '목적성'이 생깁니다.
무얼 해야 할지 몰라서 멈추는 상황이 없다고요.
이 문제의 경우 선분B1D1을 못 찾아 풀지 못한 친구들이 존재합니다.
하지만 저처럼 풀었더라면, 승부처를 찾았기 때문에 B1C1을 '다르게 표현'해야
어쩌고r=얼마 의 형태를 만들 수 있다는 것을 압니다.
그렇기에 저는 B1C1을 포함하는 도형을 찾으려고 했고, 그러다보니 삼각형B1C1D2가 보이더군요.
그래서 거기에서 '소'자 공식이라 불리는 중3 과정의 공식으로 풀이가 마무리됩니다.
항상 승부처를 찾고, 그 승부처를 실제 값으로 표현하고, r로도 표현한 후 둘이 같다고 두어야
문제가 풀림을 잊지 마세요.
그걸 잊지 않는다면 그 어떤 등비급수 문제가 나오더라도
뭘 해야 할지조차 모르겠어서 오는 패닉을 막을 수 있으실 겁니다.
도형이 약하신 분들이 도형풀다가 갑자기 정신 날라가는 경우가 허다한데
그걸 막아주는 용도라고 생각해주시면 될 거에요..!
아주 간단하게 무등비를 살펴봤습니다.
저라면 이걸 읽자마자 기출 문제집을 피고 무등비만 쭈욱 풀어볼 것 같아요.
정확히 저랑 같은 방법으로요.
오늘도 좋은 공부하시길 기원합니다.
제 칼럼 읽고 바로 공부하시라고 그냥 일찍 올려버립니다.
학교 가신 분들은 오늘 읽으셨으면 내일 이대로 풀어보시길 바랍니다. 감사합니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
퇴근했을때도 그렇고 나중에 계좌에 돈 들어오고나면 일하길 잘했단 생각이들어요 열심히하고와야지
-
이런
-
들어올거면 내 뒤로 들어와 미친놈들아
-
배꼽이 없단 걸 의식하고 걱정하지 않으려고 용을 쓰는데 뜻대로 안되는 주인공처럼...
-
매운거먹고싶다 4
속이 근질근질하구먼
-
같은 팀원들 점수 깎인다고 걱정해주던데 ㄹㅇ 착한 도람쥐임....
-
"부처를 만나면 부처를 죽이고, 조사를 만나면 조사를 죽일 것이며, 아라한을 만나면...
-
오늘 안 상식 2
베르무트는 와인이라서 냉징보관을 해야한다
-
알바가기 귀찬아 2
ㄹㅇ그냥 퍼질러자고싶음
-
낼모레는 가네
-
얼버기 5
-
이제 자러가야지 1
좋은 밤 되세요
-
하지만 잇올을 간당
-
ㅇㅂㄱ 9
-
5~6등급인데 션티 들으려고합니다.
-
밖에나가서 공부할라믄 돈이드니까 돈을 최대한아끼려면 집에서 공부해야하는데 집에서는...
-
얼버기 5
갓생 1일차.
-
얼버그 0
얼버그는 얼버기와 레버기에 잡혀먹는다
-
얼버기 3
출근중입니다
-
내가 팔로우해줌 ㅇㅇ
-
오늘 일정 2
8:00 ~ 22:00 : 잇올 22:00 ~ 00:00 : 오르비 및 운동 이후 취침 씹갓생 ㄹㅇ
-
유빈 0
시냅스 수2 답지 올리라고!!!!
-
기차지나간당 4
부지런행
-
확통 미적 고민 10
국어랑 탐구(사탐런 예정)에 시간을 많이 써야되는 상황에서 확통 -4점(다 맞을...
-
전 게이가 아닙니다.
-
ㅈㅅㅎㄴㄷ 5
지금까지 광명상가의 가를 가천대로 알았어요
-
오늘 계획 3
미용실 다녀오기 오르비하기
-
내년에 서울가서 재회하기로
-
만약에 본인이 내년에 26학번으로 입학인데 현역이라는 가정하에 같은 26학번이...
-
전 결혼도 하고싶은데 여자는 특히 결혼할때 나이가 중요하니까 너무 불안하네요
-
나중에 결국 '에이 걍 안가고 말지' 이런마인드로 바뀌면서 의욕떨어지는데 목표를...
-
하..... 여자되고싶다
-
얼버기 2일차 0
-
딱히 진로를 정하진 못했는데 이번에 아주대 전자(자전),미랴모빌리티 두개 넣어서...
-
초딩때 무지성으로 헤헤 최형우 머시따 하면서 볼때는 몰랐는데 수능끝나고 제대로 파니까 개복잡함
-
밝은척하면서 은근슬쩍 까는거+비틱질 역겨워죽게슴 소신발언
-
얼버기 2
-
스카가야지
-
잠이 2
-
지금 안정은 숙대고 홍대도 냈는데 일단 숙대를 가기로 마음을...
-
수면패턴ㅋ.. 2
수면패턴 바꿀거라고 지금 밤샜는데 몽롱하고 그냥 자고싶은데 여기서 자면...
-
얼버기 4
-
진짜 미치겠다
-
그냥 26수능으로 sky를 가야겠다 마음먹어
-
제자야 기상해라 1
학원가야지 에휴
-
자야지 1
-
ㅋㅋ
-
게임을안하니까 1
인생이꽤쾌적하네
언제나 제일 빠르시네요,, ㄷㄷ
독존!독존!독존!
날가져요,,
헉.. 오늘 이거 칼럼 하나로는 이해가 안 갈 수 있을 걸 알기에 여러 문제들을 추가로 올리려구요..! 혹시 이거 하나라도 배워가신다면 심적으로 안심이 가실 거 같아 짧게라도 올려보았습니다. :)
기원t말과 비슷하신듯
대신 쌤은 작도를 하면서 하지만
작도를 하면 제가 여기에 쓴 파랑이 분홍이에 대해 무의식적인 이해를 하게 되는데, 그걸 의식으로 꺼내온 것이라고 생각하시면 됩니다. :)
역시 강아지 프사가 최고죠 ㅎㅎ 얼마 전에 다른 분이 올리신 자작 문제 얄미울 정도로 잘 근사하셨던데요 잘 배워가신 거 같아서 뿌듯합니다 :)
허헠ㅋ 덕분입니다!! :) 좋은 하루 되세요!!
배웠으니 대가리 터져가면서 써먹고 제것으로 만들어야죠
항상 무언가 배우면 바로바로 자기 걸류 만들어주세여 ㅎㅎ
삼극사기에 무등비급끼워서 책값 올리죠ㅋㅋㅋ
무등비급ㅋㄱㅋㄱㅋㄱㅋㅋㄱㅋㄱ 기발하네요 ㅋㄱㅋㄱㅋㄱㅋㄱㅋ
잘 먹겠습니다..
정말 감사합니다
오늘 한 번 해볼게요
해보실 때 분홍이와 파랑이가 겹치는 곳을 찾는다는 생각을 잊지 마시고 그거에 초점 맞춰서 해주세요! 승부처를 찾기만 해도 한결 수월해지는게 무등비니까요 ㅎㅎ
원래 무등비를 잘 푸신 문제에 대해서는 제가 서술한 사고를 무의식적으로 하셨을 거에요..! 그걸 의식의 영역으로 끌어오려고 쓴 칼럼인데 잘 받아들여주신 거 같아서 뿌듯합니다. 앞으로 잘 푸시길 바랄게요 ㅎㅎ :)
사랑해 사랑해 독존 형 사랑해 정말 이거 읽고 삘 받아서 바로 수분감 펴서 쭈욱 다 풀어버렸어 원래 등비급수랑 삼도극 가장 문제점이 문제에 이끌려 간다? 그런 느낌 받아서 결국 문제 풀어보면 온통 호작질에 답은 안나왔었는데 목적성 이라는걸 보니 정말 뇌에 총알 밖힌거마냥 아! 하게 되도라 틀린것도 다 풀어버렸어ㅠㅠ 사랑해 다시 한 번
요지가 본인에게 딱 꽂히신 거 같아요..! 제가 정말 하고 싶은 게 지금 느끼신 그런 깨달음을 전달해드리는 건데 잘 된 거 같아서 다행이에요!! 느낌가는 대로 푸는 게 아니라 필연적으로 답이 나오기 때문에 이 방법을 알면 못 풀 문제가 없어져 버립니다. 이 문제의 본질을 제가 건드려버린 셈이니까요..!
F1 G1과 B1 C1이 왜 평행ㅇ한가유 ㅠㅠㅠ
해보시면 각이 60도여서 그래요..! 잘 생각해보시길 바라요…!
스크랩 했어요 지우지 말아주세요. ㅜㅜ
평가원 망하면 지웁니다 :)
독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네! 독존, 우리 딸을 가져도 좋네!
항상 감사합니다! 잘읽어볼게요
좋은 내용이네요 . 무등비 턱턱 막힐때가 있는데 시간이 촉박할 땐 더 풀기 어려운 유형 같습니다. 혹시 근사에 대해서도 써주실 수 있나요?
핵심은 결국 1. 그냥 구하기 힘들면 넓이가같은 다른부분을찾자.
2. 길이를 아는 부분과 구해야하는 부분이 가장 많이 겹치는부분에 집중하자 인가요?
정리하면 그 두 개가 이 문제에서 얻을 수 있는 것이라고 봅니다!
실제로 s1구할 때 안 보이면 좌표축 놓고 하시나요??
저는 좌표축 보다는 세타 잡아서 삼각비를 많이 이용합니다..! 글에 나와있어요!!! ㅎㅎ