칼럼) 수1 도형 특강 _ 기복없이 반드시 푸는 법
수1 도형 특강 .pdf
도형 특강을 필두로 수학 칼럼을 계속 게재해볼 생각입니다!
아마 투표 결과에 따라 다음 주제는 '합성함수 그리기 with 킬러 문제' 가 될 거 같네요.
파일로도 올리고, 여기에 사진으로 옮겨 붙여 설명도 덧붙일게요.
그럼 각설하고 시작합시다. :)
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------
잠시 덧붙이자면, 절대 잊지 마세요!
[ 요소들의 관계 = 그 법칙을 사용가능한 곳 } ---> 정말 중요합니다.
-------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------------------------
엄밀히 따지자면,
도형을 '이 방법'을 쓰면 무조건 풀려! 라는 말이
어떤 풀이를 하더라도 이런 논리구조를 따르면 된다는 뜻인거죠.
도형 공부는 마치 국어 공부처럼 해도 안 느는 경우가 허다합니다.
사람의 뇌가 워낙 좋아서 하도 비슷한 문제를 풀다보면
소위 말하는 '직관'이라는 능력 때문에 마치 자신이 실력이 늘은 것처럼 보이나,
정작 직관이 발휘되어야 할 시험장에서는 쏙 숨을 가능성이 농후합니다.
이를 대비하기 위해선,
어떤 상황이 오더라도 '일관적이고 논리적으로 풀 수 있는 방법'을
여러분이 갈고 닦으셔야 합니다.
이 두 문제조차도 제 풀이보다 쉬운 풀이가 존재하는 걸 압니다.
하지만, 이렇게 풀면 절대 풀지 못할 수가 없어요.
언제나 도형 문제 푸는 데에 3~5분 걸립니다.
이정도 빠르기면 그닥 느린 것도 아니고 시험장에서 언제나 사용가능하단 측면에서
훨씬 가성비가 높다고 생각됩니다.
어떻게 도형의 성질과 여러 법칙들을 공부해야 하는지와
도형 문제 풀이 시에 따라야 하는 논리 순서를 알아봤습니다.
앞으로도 여러 주제를 다뤄볼겁니다.
도형 특강은 우선 도형 문제들을 여러분이 어떻게 공부하면 좋겠다는
방법론적 측면에서 작성했지만,
합성함수 그리기나 미분 가능성은 제가 일방적으로 제 방법을 여러분께
주입하는 형식이 될 거 같습니다.
긴 글 보느라 고생많았고, 도형 문제가 막히면 큰일나는 무서운 문제가 아닌
'시험장에서 여러분들이 숨돌릴 수 있는 쉼터'가 되길 바랍니다. :)
0 XDK (+24,000)
-
16,500
-
1,000
-
1,000
-
500
-
5,000
-
안올것같지만 반드시 오는 그날이....
-
멘탈 개나간다 1시에 누웠는데
-
ㅈㄴ시끄러
-
ㅠㅠ
-
윾건...그저 goat 하지만 어림없지 '누가 배웠는데'
-
계정 헷갈린 Fㅔ미 검거 ㅋㅋㅋㅋㅋㅋㅋ 진짜 특정 집단에서 계정 사서 여론 조작하는 거 맞다니까
-
진인사대천명 0
수능 다 잘 보길 바라지 않습니다 죽어라 노력한 사람은 실력보다 더 잘 보길...
-
26학년도 수능 0
낼부터 시작할건데 같이 가실 분 댓ㄱㄱ
-
가오도 주세요 그냥 제게 강림해주세요 빙의해주세요 선생님의 가르침 헛되지 않게 해볼게요
-
왜 자꾸 머릿속에 멤도냐 이기상 선생님 목소리 억양이랑 같이 생각남
-
좀 열심히 할걸 싶기도 한데 뭐 그동안 안했던거보면 난 과거로 가도 또 애니보고...
-
술 괜히 마셨다
-
Team 07 D-366
-
노베 재수 1
핑계지만 예체능이라 고3 올라오고 나서는 공부를 거의 안했습니다. 내신은...
-
내일 할거 0
기출 복습후 취침 꿀잠자고 수능 패기
-
오늘 3시간정도 자고 내일 헬스 존나 달려서 11시취침->6시기상 헬스 왜하냐면...
-
동덕여대 0
나중에 역효과 엄청 날 것 같아요 입결 떨어지려나요.... 여튼 사람들한테 인식...
-
날샐려면 10시반~11시까지는 졸음와도 존버타야함
-
일단 나 낼 잠 안올거 같아서 그냥 3시간만 자려고...
-
그냥 수능 공부??
-
이수법 수능때도 써먹어야겟다 걍 깊게 생각안하고 좀만 틀린거같은거 바로 체크하고...
-
얼굴 보여줘야했나 기억이 안나네요
-
안 한지 2개월 넘었는데 저도 참 바보 멍청이네요... 다행인건 반팔 시즌 아니라...
-
ㄹㅇ 밤샐까 2
진짜 30분 ~1시간넘게 누워있았는데 잠이안온다 진짜 차라리 공부하고 저녁 8시쯤에...
-
https://orbi.kr/00060979827/%E2%9D%97%EC%9D%B8%...
-
안녕하세요, Aclass입니다. 수능 시험 직후 정답을 교차검증하여, 높은 정확도로...
-
데드 개빡세게함
-
시위하는거 너무 시끄럽고 꼴뵈기 싫음
-
ㅋㅋㅋㅋ
-
동덕여대 떡밥 0
이거 수능 끝나고 터졌으면 오르비에서 놀맛 났을텐데 ㅋㅋ 좀만 늦게 터뜨리지..
-
후기 남기러 수능날에 돌아올게요
-
작년 수능 전날에 잠 안와서 3시간인가 4시간 자고 들어갔어서 오늘 걍 안자고 내일...
-
진짜 다 왔네요 오늘 하루만 버팁시다!!
-
하려하는데 탐구는 ebsi로 된다봄??
-
수능준비물 3
주변에 평소에도 짐 보따리로 싸 다니는 친구 있는데 수능 준비물로 여분 속옷하고...
-
작년에 이상치 결측치 딱 맞추진 못햇고 수능 2주전에 톡방에서 애들이랑...
-
수능때 물 2
페트병 500ml 가져갈때 라벨 떼고 가져가야하나요? 그리고 시험을 볼때 같이...
-
국수베이스충분함
-
그냥 느낌이 그럼 참고로 작년에 선거 관련 지문 나올거 같다고 느낌왔는데 맞았음...
-
수많은 시험 중에 하나일뿐 능력껏 보는거고 그만큼의 점수가 나오는게 당연 대학 맘에...
-
분명 옛날엔 덕코가 많았던 거 같은데 그땐 어케 많았던 거지..? 오르비를 미친 듯이 했었나..??
-
아니면 오늘 몸 피곤하게 만드려고 전략적으로 안자는거임?
-
하루 벼락치기 해서 1등급 쟁취하는거 보여준다 내가 보여줄게!! 20시간 정도면...
-
갑자기 우기분1에 뚝딱정리 올라온 거 보니까 안 나올 거 같음. 힝.
-
실제 상명대는 모르고 상명여대는 아시는분들 있음... 근데 그분들에겐 상명여대가 인식 좋았던듯
-
쉬운문제 한 10개 빨리풀고 드가기 VS 오답정리한 준킬러 한두개 다시 풀고드가기
-
그냥 오늘은 쉬운실모 84-88 띄우고 끝내야 할 듯 0
그래야 수능장에서 멘탈 괜찮을 듯
-
괜히 뭐 먹엇네 0
배불러서 잠이 안와
스크랩
1등먹었다!
2시간 ㄷㄷ
수식이라서 오래 걸린…. 국어보다 수학이 훨씬 쓰기가 어렵네요…
큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다! 큰거왔다!
앞으로 수학도 열심히 써보겠습니다,, 아직은 부족하지만 성장하겠습니다..!
유용하게 잘 쓸게용
사인법칙에서 예시 들 때 각 ADB 아닌가요?
헉 어디죠??
아아 찾았어요!
개추!
다 바꿨어여
더욱 정진하겠습니다
도형이 좀 그렇죠 ㅠㅠ
선생님 좋은 칼럼 감사합니당 ㅎ 중등기하를 위해서
합동 닮음 원의성질 중등문제 푸는 건 어떻게 생각하시나요!!
중등 문제는 제가 하듯이 단계를 밟으면 대개 눈으로 풀립니다. 그러니 눈으로 슥슥 풀 수 있을 정도가 되도록 중등 문제를 풀며 저 논리구조를 학습시키는 것도 좋은 방법 중 하나라고 말씀드릴게요..!
순공적립.
훌륭하네요. 이런 자료 준비하는 것은 수험생활의 정리인지 궁금하네요.
수험 생활할 때 고3 때까지 소위 말하는 대치동 학원 같은 걸 다녀보질 않아서 혼자 공부하는 시간이 많았거든요.. 그 때 얻은 것들을 공유하면 조금이라도 다른 사람들 공부가 쉬워지지 않을까 하는 측면에서 하기 시작한 일인데, 실질적인 도움이 되면 좋겠습니다... 나름 거창하게 말하면 교육평등을 이루고 싶어서이고, 간단히 말하면 잘난 척이죠...ㅎㅎ,,
훌륭하다고 해주신 칭찬 감사합니다!!
역시 선한 영향력 가진 분이시네요. 감사하게 잘 이용하고 응원할께요.
읽어주시고 이상한 점 있으면 바로 수정할게요..! 수학은 써보니 좀 어색하네요 ㅜㅜ
칼럼에서 쓰신 논리 순서가 제가 도형 외에도 킬러 문제가 막힐 때 접근하는 방법과 굉장히 비슷한 거 같네요.
삼각함수의 극한 문제에서 도형을 해석한 후 답으로 도출하는 과정만 남았을때,
극한값을 구하는 식이 너무 복잡해지면
도형을 다른방식으로 다시 해석하시나요 아니면 억지로 구해버리시나요?
네 꼭 찾아 가겠습니다 ^^7
와…지렸다….
깨달음이 있으신 것처럼 보이는데 그 깨달음이 본인에게 온전히 흡수되시길 바라요..!
감사합니다 ㅎㅎ
독존넴 질문이 있습미다 이게 도형 전범위를 다루신거죠?
수1 도형입니다..!
네넹 수1도형 삼각함수 뒤에나오는 그부분 전체용
수열도 해주세요
네..!!
헉... 개쩐다 이대로 무등비까지 올려주시면 도형은 다 족칠수있을듯..
무등비는 삼각비로 다 풀리죠 준비할게요 ㅎㅎ
항상 도형문제를 직관으로 풀어서 고민이었는데 감사합니다 정독하고 이제 적용해볼게요!
ㅇㄷ
잘 읽었습니다 감사합니다