[한큐정리 by 조관T] 가오스 함수 그리는 법
안녕하세요. 오르비 인강 수학 조관 선생님입니다.
오늘은 가오스 함수에 대해 정리를 해보겠습니다.
가오스 기호 [ ] 의 의미는 다들 알고 계실거라 믿습니다.
[a]라고 한다면 a를 넘지않는 최대의 정수를 말하죠.
곧 a보다 작거나 같은 정수 중 가장 큰 값을 의미합니다.
[5.7]의 값이 뭐냐고 물으면 대부분 5라고 정확하게 말을 합니다.
하지만 [-5.7]이 뭐냐고 물으면 혼란스러워 합니다. -5인지 -6인지 헤깔리는거죠.
자, 수평선을 하나 그리고 정수눈금을 표시해보세요.
-5도 표시하고 -6도 표시하고 이제 -5.7이 어디에 위치하는지도 대충 표시해보세요.
-5.7 보다 왼쪽에 있는 수가 작은 수이고 오른쪽에 있는 수가 큰 수입니다.
곧 -5.7보다 작거나 같은 수 중 가장 큰 정수는 -6입니다.
곧 [-5.7]은 -6이 되는 것이죠.
암기를 하려고 하지 마시고 처음에 다소 시간이 걸려도 좌표를 통해서
이해를 하면 나중에 헤깔릴 일이 없습니다. 아무리 완벽하게 암기를 했더라도
시간이 지나면 잊혀집니다. 잊혀지지 않았더라도 수능 당일 엄청난 압박감 속에서
자신있게 암기해놓은 사항도 긴가민가 의구심이 들기 마련이죠.
하지만 수평선을 통한 방식 등의 이해위주의 공부는 절대 잊혀지지도 않고
헤깔리지도 않습니다. 항상 이해 위주의 공부를 하시길 바랍니다.
이제 아래에서 보이는 가오스 함수 3형제를 그리는 기법을 알려드리죠.
1번은 가장 대표적인 가오스 함수 형태죠.
그리는 방법은 단순합니다. 바로 대입입니다.
x에 0를 넣으면 0, 0.5를 넣어도 0, 0.99999를 넣어도 0입니다.
하지만 1을 넣는 순간 y값이 1이 됩니다.
같은 방식으로 x에 -0.1를 넣으면 -1, -0.5를 넣어도 -1, -0.9999를 넣어도 -1,
-1를 넣으면 당연히 -1입니다.
하지만 -1.1을 넣으면 y값이 -2로 뚝 떨어집니다.
이렇게 대입을 통해서 계단형 가오스 함수를 그려내는 것입니다.
이것도 매번 나올때마다 위와 같은 대입 발상을 해서 그리면 점점 스피드가
빨라져서 어느 순간 그야말로 후딱 그려지게 됩니다.
2번 함수를 그리는 발상은 2가지입니다.
첫 번째는 물론 대입입니다.
1번에서 알려드린 대로 숫자들을 대입해보면서 한번 그려보시기 바랍니다.
두 번째 방식도 대입이긴 한데 조금 세련된 대입이죠.
2번 함수의 x값에 정수가 들어가면 무조건 y값은 0이 나옵니다. 그런데 0보다 크고 1보다
작은 값이 x에 들어가면 [x]=0 이 됩니다. 결국 해당 구간에서는 y=x가 그려집니다.
1보다 크고 2보다 작은 값이 x에 들어가면 [x]=1이 됩니다.
결국 해당 구간에서 y=x-1 이 그려집니다. 해당 구간에서는 y=x 그래프가 y축 방향으로 1만큼
내려오게 되는 것이죠. 이렇게 그리다 보면 y값이 모두 0보다 크거나 같고 1보다 작은
범위에서만 나오죠.
이렇게 나오는 것이 당연한 거죠.
왜냐면 [x]는 x의 정수부분이고 x-[x]는 x의 소수부분을 말하는 거니까요.
통으로 이해가 되시죠?
자, 이제 2번 함수를 이해했다면 3번 함수는 좀 더 쉽게 그려질 수 있습니다.
일단 3번 함수를 그릴 수 있을려면 로그함수의 기본형은 이미 마스터 되어 있어야겠죠?
일단 가오스 기호를 씌워서 정수가 나오는 값, 즉 1/4, 1/2, 1, 2, 4 등을 x에 넣으면
y값은 0 이 나오죠? 1보다 크고 2보다 작은 값을 넣으면 가오스 값이 0이 나옵니다.
그러므로 해당 구간에서는 로그함수만 그리면 됩니다.
그리고 2부터 4의 값을 넣으면 1이 나오구요. 그럼 로그함수를 그린 다음
y축 방향으로 1만큼 내려 그리면 됩니다.
주의해야할 것은 1보다 작은 구간입니다. 1/2와 1 사이의 값을 x에 넣으면 로그를 씌운 값이
-1과 0 사이의 값이기 때문에 가우스를 씌우면 -1이 됩니다.
그럼 해당 구간에서는 로그함수를 그린 다음 y축 방향으로 1만큼 올려 그리면 되겠죠?
이런 발상으로 그려나가면 3번 함수그래프 그리기가 완성됩니다.
완성된 그래프를 보면 y값이 0보다 크거나 같고 1보다 작은 범위에서만 나오죠?
왜냐하면 많은 학생들이 알고 있겠지만 저 함수의 y값은 가수부분을 의미함으로 당연히
0보다 크거나 같고 1보다 작은 범위에서만 치역이 나와야겠죠.
이렇게 수학은 통으로 모든 것이 맞아 떨어짐을 이해하는데 재미가 있는 것입니다.
3번 함수 그래프를 그리는 데에 필요한 로그함수에 대한
추가적인 정리가 필요한 분들은 현재 업로드 중인
급소공략 수학Ⅰ로그함수 개념정리 맛보기 강의를 참고하시기 바랍니다.
오늘도 즐공! 열공!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개쌉에바쎄바같음?? 사실 각 보이는 데가 여기뿐이라 쓰긴 쓸텐데 생각이 많아짐요...
-
어느쪽이 나을까요?
-
보컬로이드니 머니 잘 모르고 서코도 들어만 보고 머 하는덴지 잘 몰룸 히히
-
해가뜨는군요 2
-
송도 사람많음? 5
독학재수학원이 대치급으로 많은데?
-
성균관대 문과 논술 합격했습니다. 바로 전 글 보시면 인증 가능합니다. 학원 안...
-
다음주부터 수능공부 해야지
-
서울대가 짬 -> 실제로는 서울대 합격할 수 있는 표본 일부를 불합격하고 연고대...
-
취침 3
다들 안녕히주무세용
-
분명 8시에 자서 2시쯤 깨는 계획이었는데..
-
미분VS적분 3
여러분은 고등학교 수준 내에서 미분과 적분 중에 무엇이 더 좋았나요?
-
기상 4
-
이어폰,헤드셋 끼면 답답해서 노량진 고시촌가서 1인실독서실결제후 스피커사용해서 인강들을려고 합니다.
-
셋 다 나군이라서 고민되는데 이건 단국치가 맞음?
-
썸남/썸녀에게 "같이 별 보러 갈래?" 라고 말할 수 있고 낭만이 넘치는...
-
추합이라도 ㄱㄴ? 간절함
-
쪽팔려서 남들한테 성적 못 말하고 다닐듯
-
맞죠? 1컷 맞추기는 확통이 2배 이상 쉽다는데
-
이게 맞나 ㅋㅋㅋㅋㅋㅋ
-
체스 할사람 2
아직 안자는 옾붕이 있나요?
-
이 길의 끝이란 운명처럼 모두 네게 흐르고 있어
-
누구 자녀분이 들어가고싶다고 강력히 주장하기라도 하나?
-
언어 하나 배워두고 복수 전공으로 경영 같은거 같이하면 문과에선 경쟁력있고 ㄱㅊ않음?
-
난 1학년임 0학년이 될수도있다는게 개소름
-
기차지나간당 17
부지런행
-
늦은 나이에 대학을 다시 가야겠다고 결심하고, 컴컴한 밤까지 독서실에서 수능을...
-
경희대 자전 7칸은 말도안되는데 정상화빨리해줘
-
입시는 진짜 2
빨리 뜨는 사람이 승자
-
추천 좀…
-
디즈니랜드 가볼지말지
-
카의 인성면접 점수제 도입(수능 95%, 면접 5%) 성의 모집인원 50명으로 대폭 증가
-
대학교 들어가서 받는 교육이 훨씬 더 중요한거 같은데…
-
정시 64311 2
국어 백분위 33 수학 백분위 74 영어 3 한국지리 백분위 97 세계지리 백분위...
-
잠이 안온다 1
-
오늘 동기랑 7
카공하면서 재수 때 같이 다녔던 학원 이야기했는데 추억 돋고 재밌더라 금방 미화되는 듯
-
본인이 문자 그대로 똑같이 유지만 해도 수능 체제나 평가방식, 모집인원, 반영비 등...
-
사탐런 고민 8
이번에 생지 원점수 44,40인데 생명은 사실 여기서 더 잘볼 자신은 없고 지학은...
-
백분위 97~100 : 나 1등급인데.. ~~ 백분위 89~95 : 나...
-
원서영역 ㅁㅌㅊ 13
걍이대로ㄱ할까아님 걍 고대 질러버릴까 군수생임
-
증원이나 이런거까지 고려해봤을 때 어떤거같음? 나군에서 인설의 아닌 곳 쓸 곳이...
-
찾았다 0
한국사 -> 한검능 국어 -> LEET / PSAT / 7급 공무원 시험 국어 영역...
-
안된다고 해도 할거지만 정작 된다고 하면 의심함
-
오르비를 한다 < 한번 더 할 확률 50퍼 이상
-
안자는사람 손. 9
흠
-
ㅈㄱㄴ
-
시간이 갈수록 목표도 낮3 -> 높3 -> 낮2 이런 식으로 오르기도 했고...
-
일반학과들 작년에 비해 전체적으로 수시 경쟁률 높아졌던데 이유가 뭐임? 올해 수험생...
-
미쳤냐고함 당연함 이친구는 재수도 안함
-
1. 1년 더 한다고 전혀 오를것 같지 않음 2. 현장에서 운이 3~4번은 따름
-
5명인데 제 인간관계 좀 정상이 아닌거임? 왜이러냐 애들이 다들 군대가서 군오수...
가오스도 맞는 말인가요?... 가우스로 배우긴 했는데
인정합니다! 가우스 콜!
가우스
감사해요!! 내일 저범위도 셤범위에들어가는데 되게햇갈렸거든요 ㅠㅠㅠㅠㅠ
헐 조관쌤 ㅋㅋㅋ 제가 그냥 농담삼아 가우스 함수 가나요 했던 사람인데 ㅠㅠ 감동이에요 ㅎㅎ 저 이번에 한대 수학과 들어가는데 자주자주 이야기해요 ㅎㅎ
저도그댓 봤어여ㅋㅋㅋ 저도쓸려다말았는뎁..ㅋㅋ
그래요 자주자주 이야기합시다 캠퍼스 생활 원없이 즐기세요
고오스 빵먹고싶다...
헐 감사합니당ㅜㅜ 최근에 공부하면서 이 그래프 개념정리 필요했엇는데...ㅜㅜ캡쳐해 갈께욤^.^
뭐 이상한 가우스도 있던...
바닥함수랑 천장함수 ... 처음엔 백터같은건줄 알았는데(방향표시되있어서..) 알고보니 가우스더라구요 ㅋㅋ
가오스라 하니까 엄청 쎄보인다..
가오있오보인다..