[Daily OIS] 19일차 - 수학Ⅱ 2개
2022.07.17
업로드한 파일을 내립니다. 앞으로도 좋은 자료로 찾아뵙겠습니다.
감사합니다.^^
----------------------------------------------------------------------------------------------------
'올바른 『변형』이란 무엇인가?' (난이도 : 14or29번 수준)
안녕하세요? 오인수입니다.
검증된 OIS, 1~2일 간격으로 4점 문항을 올려드리고 있었습니다. (자주 만나요!ㅎㅎ)
출간된 OIS 모의고사와 단 한 문항도 겹치지 않습니다.
오늘은 먼저 교육청 문제를 올려드립니다.
20.04.24. 학평 나형 20번
(이 교육청 문항은 '어떤 조건'이 쓰이지 않았습니다.)
그래서 준비했습니다!
다 푸셨으면, 바로 다음 문제를 풀어보시기 바랍니다.
Daily OIS 19일차 - 『변형』이란?
정답은 첨부파일에서 확인해주세요.
잘 풀어보셨다면 좋아요 또는 댓글을,
앞으로도 좋은 문항을 만나고 싶다면 팔로우를 해주세요!
오늘 하루도 잘 마무리하시기 바랍니다. 감사합니다.
(가기 전에 눌러주고 가세요♥)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
컴활 어려움? 0
1급 따려하는데
-
등비급수에 한해 맞는 말 아닌가요
-
ㄱㄱ
-
국민대vs세종대 1
ㄹ
-
살빼고 싶다 0
하아
-
"가르칠 자격" 이라는게 따로 있는건가 싶기도 하당 유독 강사한테 더욱 엄격한듯
-
작년 대성학원 반수 시즌 장학 요건 보니까 수학 1이 절실히 필요하다.
-
ㅎㅇㅈ쌤… 하아… 대성 수학 강사 추천해주세요 수학 잘 못해요 3-4정도.....
-
서울대 쓰기도 애매하고 지방 메디컬도 영어 2라 애매하다고 하네요. 반영비 맞는 대학 없을까요?
-
31211인증하라는 게시물보고 깜짝 놀랐습니다…. 불과 5분전에 쓰신글에선...
-
그 사람이 날 만나고 싶지 않을 수도 있잖아요..
-
인강 커리 질문 0
예비고3인데 지금 물리,지구 인강 개념을 듣고있습니다 물리는 역학적에너지 보존...
-
무물보 ㄱㄱ 17
아무잘문이나 받음
-
ㅈㄱㄴ
-
예비 재수생인데요 ,,, 올해는 생1 지1 을 했구요 재수하면서 생1을 다른...
-
일단 우리학교는 학종 지원보다 3배 많은 인원이 논술을 씀 저도 한두장은 수리 논술...
-
삼반수 고민중임 부모님한테는 과외 때문에 한번 더 친다고 했고 이건 오케이 하신...
-
아 2
1퍼 깎임 기분나빠
-
수능좆망이후 4
시발걍 포켓몬 세계로 들어가서 조교당하고싶다
-
..
-
ㅎ.ㅎ
-
이제 자야겠다 1
-
객관적으로 빻아도 ㄱㅁ 소리 듣게 해줌 자존감 올려주기 GOAT
-
성적표 12월 6일에 교육청 가면 받을수 있는거임? 3
정신병 걸릴듯 ㄷ
-
개노잼이네..
-
ㅇㅈ)) 10
쌍윤입니다
-
ㅇㅈ 1
이과증명
-
대성 하나만 사도 걱정은 없겠죠..???
-
경기대 탐구 하나보는데 국어 때문에 안될까요? 안된다면 혹시 어디까지 넣어볼 수 있을까요?
-
대만 부산 제주 서울 등등
-
ㅇㅈ 2
어떤 GOAT 오르비언분께서 보내주신 수능 샤프 ㅇㅈ +) 수정테이프 연필 지우개
-
정시 출결 1
제가 정시라 조퇴를 많이 해야할 것 같은데 지금 현재 정시에 출결 들어가는 대학교가 어디일까요
-
학생인 나는 그저 범부였다 운동 못하면 걍 학창시절에 연애 못한다 ㅇㅇ 아니면 잘생기던가 ㅅㅂ
-
나 같은 범부는 얼굴 인증 안해야겠다
-
좀많이 좆될듯요..
-
왜클릭
-
ㅋㅋ 인증도 한 겸 막나가야지 이야 딱좋노
-
성대 논술 0
성논 일요일 12 30 보신분 있나요?? 제발 붙었으면 좋겠는데 어느정도 푸셨나요
-
[단독]동덕여대 총학 “래커칠, 총학과 무관… 솔직히 통제력 잃었다”[취재메타] 5
21일 오전 대학본부·총학 회의록 단독 입수 총학생회 “본관 점거, 학생회 주도...
-
오르비를 하면 안되긴 함 알빠노메일이긴함 사실
-
논술갈말 1
2(86)3(69)25(29)4(31) 나왓는데 세종대건축 논술쓴거 가야할꺼요??...
-
갑자기뭔인증이여 2
아닌가이게맞나
-
만약만약 만약에 여당과 야당이 동일한 한가지의 목표를 두고 정치를 한다면 (서로는...
-
나갈래
-
ㅇㅈ이나 할래 17
근데 지금 빡빡이사진은 진짜 아닌 것 같아서 2년 전 사진으로 재탕 하도 많이해서...
-
ㅇㅈ 2트 )) 4
펑 어그로 ㅈㄴ 끌었습니다 ㅈㅅ합니다 사진은 저 맞아요
-
킥킥...그걸또...킥킥...
-
공대생들 개 멋있는점 12
좀비 아포칼립스 와도 스스로 인프라 구축해서 기지 세울듯
-
ㅠㅡㅠ
내년은 오인수!!!
문제 푸는데 넘 재밌습니당 감사해욜
내년에 오인수할게욥
문제 이렇게 올려주셔서 감ㅍ사해요ㅠㅠ 오인수 때문에 화룡점정 커리에 끼웠어요ㅋㅋㅋ!!! 모의고사도 내일 사려구요!
좋은 말씀 감사합니다ㅎㅎ 화룡점정 얘기가 나와서 한 가지 말씀드리면,
화룡점정에 들어간 제 문항과 출간된 OIS모의고사는 단 한 문항도 겹치지 않습니다!
올해 좋은 결과 있으시길 바랍니다!ㅎㅎ
ㅠㅠ감사합니다
교육청은 그림판으로 풀었는데 하다보니 이게 너무 힘드네요 ㅋㅋ
1일차부터 하고 올게요..
ㅎㅎ 교육청은 『도함수의 부호변화』를 쓰지 않아서, 조금 쉬웠던 것 같아요!
학습에 도움 되시길 바랍니다.^^ 감사합니다!
아 ㄴㄴ 제 눈이 침침했던거였네요;
나나나나나나나난아나나아아나나나나
화리용점정 배너에 오인수님 참여했다는것 보고 믿고 질렀사와요
자꾸 다른 쌤 교재 언급하는것 같지만... 저도 화룡 받고 ois님 문구 박힌거 봤습니다 ㅎㅎ 곱씹어 보겠습니다 감사합니다
선생님 좋은문제감사합니다 g`x의 절댓값을 풀려면 fx의 음양을 알아야하는데 f의 근이 0,0,a이니 a가 0보다 클때랑 작을때랑 나누면 x가 a보다 클때랑 작을때랑 fx의 음양이 확실히 나뉘길래 그렇게 바로 절댓값풀고 플었습니다 근데 x=0에서도 fx가 0이라서 이부분이 뭔가 이래도되나싶긴햇습니다
그리고 질문이있습니다 사진으로 첨부할게요
이계도까지 가면 판단할게 사라져서 미적선택자한테 유리한듯하네요.
그건 도함수가 미분가능한 상황에서의 극대/극소 판정에서는 어쩔 수 없는...
(다항함수라서.. 변곡점과 비슷한 맥락이라고 봅니다ㅎㅎ)
ㅎㅎ좋은 질문이에요. g(x)는 int_0^x 형태로 '정적분으로 정의된 함수'이기때문에
g'(x)는 정적분으로 정의된 함수의 피적분함수인 |f(t)|가 되는 것입니다!
저기서 int_0^x 뒤에 나오는 식(이를 테면 |f(t)|)은 연속성만 보장되면 되는 것이고,
미분가능성이 보장될 필요는 없습니다.
(굳이 절댓값을 벗겨가며 케이스를 나눌 필요가 없다는 얘기에요!)
관련 문항을 첨부해드립니다. (출처 : 2017수능 나형 20번)
선생님감사합니다만 제가 확붕이라 int_0^x라는 용어를 모릅니다 ㅜㅜ
"인테그랄 0부터 x까지"를 말한거였어요ㅎㅎ 답변이 이해가 되셨나요!?
선생님 제가 적분쪽 개념이 부실한가 봅니다 ㅠㅠ 이해가 잘 안되는데 어느부분에서 이해가 안되는지도 모르겠습니다.. 적분쪽 개념좀 다시 볼게요
그 저거 나형 2020년거 맞나요? 2020문제 치니까 지수함수 문제나오는데..
작년 3월 모의고사가 코로나때문에 밀려서 4월에 시행되었습니다.ㅎㅎ