[2014.9] 21번 심층분석
작년 9월때도 http://orbi.kr/0003054370 이런글을 올린적이 있는데
올해도 비슷하게 "대충 풀어도 맞을 수 있지만" "완전히 논리적으로 풀기는 어려운" 문제가 나왔네요.
마지막에 음영으로 된 문제와 똑같다는 것을 깨닫는 것을 목표로 읽어주세요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가채점잘못됐을까봐벌벌떠는시간이랑 무의미하게옯비하는시간이줄어듬뇨
-
ㄷ ㅗ ...
-
독서실 안가서 돈 안쓸줄알았는데 합격예측 사고 이것저것 하니까 돈이없노 ㅋㅋㅋ
-
기트남어도 칼럼이 넘쳐나는데 왜 수능끝나고 확통영업칼럼이 하나도없지.... 다들 미적이들이라 그런가
-
어떻게든 1 문닫고 들어갈수는 있을까요 모든 최저가 다 여기에 걸려있는데 하
-
내리는 하얀 눈처럼 너에게 닿을까요
-
복근뽕,어깨뽕 없나
-
이번 수능 과탐때문에 폭망했다고 보면 될 정도로 과탐을 망했습니다 화1지1 했는데...
-
2학년때 써도 3학년때 쓸 수 있나요? 절차가 복잡한지도 궁금해요 지금부터 써서...
-
코 너무 답답함 0
날씨가 너무 싫다
-
야한거 0
쓸려다 못 썼다
-
zㅔ하하하하하하 1
zㅔ하하하하하하
-
문과 2~3등급대인데 지방살면 무조건 지거국 가는게 낫겠죠? 1
지방사람인데 고2 모고 2등급 중반대 나옵니다 솔직히 좀 더 오를 수도...
-
심심하다 0
심심
-
부럽다 나도 도전?
-
지2외 뭔가 느낌이 비슷한 그래서 미적 스테이 하기러 함
-
놀러갔다옴뇨 2
-
두급간정도인가
-
질받 12
무물보
-
인강강사,헤어디자이너 사진보고 신청했다가 몇번 낭패봤어 실물보다 얼굴이 더 부하더라 다
-
알려주시면 너무 감사하겠습니다...제발 ㅠㅠ
-
빼에엑
-
진짜 애정했는데.. 난 아직도 물리1 문제만 봐도 반응 온단 말이야... 물리2로 가야된다니..
-
부모님한테 사달라기 귀찮아서 직접 사는 사람이 있다
-
03년생 26학년도 복학 경기대 기계 -> 항공대 ai자율주행(기계복전ㄱㄴ) 투표...
-
젊은 나이에 뜬금없이 전립선염 걸려서 근 며칠 1시간 간격으로 화장실 가는데, 다른...
-
오늘 눈온다매 5
눈온다매!!! 왜 비오는데
-
미용실 특 4
머리 자르고 나오면 매번 맘에 안듦 -> 머리의 문제가 아니라 모델의 문제
-
고려대학교 지리교육과에서 25학번 아기호랑이를 찾습니다!! 0
민족고대! 청년사대! 민중지교! 고려대학교 사범대학 지리교육과에서 25학번...
-
가맹점 잘 알아보고 쓰면돼!!!!!!!
-
언매 문제집 2
개념은 유대종 언매총론 듣고잇는데 n제도 같이 풀고싶어서여 전형태...
-
어떤게 더 가성비? 물론 피부과 전문의 되는게 훨 어렵겠지만 그만큼 노력의 대가가 돌아옴?
-
그것은 긴장감 도핑 먼가 체질이 긴장할수록 잘하는거같음 실모볼때도 학원에서...
-
찾❗️았❗️다
-
가만안둬
-
댄디님 잘좀 해봅시다 로스터도 좋으니깐
-
내 여캐일러투척글을 최대한 많은 사람에게 보여주고 싶은데
-
고려대학교 수학교육과 신입생준비위원회에서 25학번 아기호랑이 여러분을 찾습니다! 0
민족고대! 청년사대! 자주수교!안녕하세요! 고려대학교 수학교육과...
-
역시 전국기하연합회
-
가만히 듣다보니 생각해보니 캐롤이잖아 개열받네
-
중대도 어려운가요... 써볼 만한 곳 없을지 도와주세요 ㅠㅠ
-
정시실패 12
어쩔 수 없지 올해는 수시로 간다
-
문이과 상관없이요
-
인천,부평,수원 1
남녀끼리 노는 걸 좋아하는 애들이 많은 동네
-
냥
-
하다가 숙제안해오고 말안듣고 이해못타면 분뇨해버릴지도
굳 저 연대가면 싸인해줘여 내친구 성광고나왔는뎁
맞긴맞았는데 난만한님께서 써주신 풀이대로 생각하는 능력을 기를려면 한완수 미분에서 어디부분을 하는게나을까요??
깔끔하고 좋다..
이런건 어떻게 혼자 알아내시나요?ㅠ
잘 봤습니다. 근데 좀 의문인게 있네요.
도함수를 그리는것이 수능의 본질이라고 하셨는데.
문제가 쉽게 출제되서 그렇지, 삼각함수가 껴있으면 보통 학생들은 그리기 힘들텐데요...
오히려 f'(x)를 그리기 보다 매개변수 미분을 분석하는것이 좀더 옳은 방법이라고 생각합니다.
이차함수랑 lnx가 포한된 함수랑 유사한 경향을 띈다고 하셨는데... 이게 교과서적인 발상인가요?
오리혀 문제가 난이도를 낮추려다 보니 함수f(x) 가 되는거지
일반 곡선일 경우 저러한 접근은 상당히 위험합니다.
매개변수 미분법을 개념적으로 좀더 접근하는것이 수능답다고 생각하는바입니다.
이미 6월 모의고사 30번에도 일반곡선이 등장했고, 충분히 매개변수랑 엮을 수 있습니다.
이상입니다.
연대수학과 영우알아연?
전 보자마자 세번째로 풀어서 21번의 포스를 전혀 못느꼈는데 저런 철학이 있었군요
각주 1번 두개중에 아래1번 이해가 안가구요.
6번에서 e^t이거를 도함수에서 고려안하는건 당연히 지수함수는 항상 0보다 크니까 증감파악할때 필요업ㅅ어서 고려안하는건데 증가함수이기 때문에 개형이 유사할것이다 라고 말한거랑 왜 수학적으로 동등한지 모르겠어요.
6번 밑에 사실은 하ㅂ성함수의 미분이기도 하고..란말도 이해가 안가구요.ㅠ
알려주세요! 난만한님
예시에 x=e^t+e^-t이면 힘들다고 하셨는데, 그렇게 하면 y가 x에 관한 함수가 아니지 않나요??