2014학년도 6월 평가원 모의고사 대비 자작모의고사 올립니다.~^^(수학 B형)
(77.0K)
[614]
Niah Jung 6월 모의고사 문제지 B형.hwp
(11.5K)
[263]
Niah Jung 6월 모의고사 정답.hwp
안녕하세요. 고삼 현역입니다. 그동안 짬짬이(?) 만들었던 문제들을 바탕으로 6평 대비 모의고사를 만들었는데요.
아무쪼록 도움이 되셨으면 합니다.~^^ 모두 열공하세요.
p.s 오류,지적 받습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
제목 보면 아실테지만 문과고 여자입니다수능점수가 충분히 나온 상태라면 어디를...
-
둘 중 한 군데는 확정이고 한 군데는ㅇ ㅏ직 미정인데김칫국일 수도 있지만......
개인적인 요청이지만 hwp 이 외에 pdf 파일도 올려주셨으면...하는 바람이 있어요.. ㅠㅠ 노트북을 포맷하고 난 직후라 한글 프로그램이 없네요..
현역이신데 그런것도 하세요? 대단하세요 ㅋㅋ 아전 6평하루전인데 수특도다못봤는데 학원도 안가고 집에서 이러고 있고... 한심 ㅋㅋ
8번 아무리 풀어도 120개가 넘어가게 나오는데 풀이방법좀 알려주실 수 있을까요??..
우선 g(t)= a^pt+b^qt임을 알 수 있으실 겁니다.
이때, 최소인 지점을 찾기 위해서 양변을 미분하면 g'(t)=plna(a^pt)+qlnb(b^qt)임을 아실 수 있는데,
이 곳에서 p=q일 때, 단조 감소 또는 단조증가가 되어서 최솟값을 가지지 않음을 알 수 있습니다.
그래서 p=1, q=-1, p=-1, q=1로 분할하면,
g'(t)=0의 근은 우선 p=1,q=-1일 때, lna(a^t)-lnb (b^-t)=g'(t)에서 (log_a(b))(b^-t)=a^t인 경우 도함수가 0임을 알 수 있습니다. 그리고 그래프를 그려보면 b>a인 경우에만 g'(t)=0이 성립하는 t의 값이 양수가 됩니다. 따라서 이 경우 11개의 자연수에서 2개의 자연수를 뽑는 경우이므로 조합에 의해서 55가지가 됩니다.
그리고 p=-1, q=1일 때는 위의 풀이에서 a를 b에 b를 a에 집어넣은 형태입니다.
따라서 a
p=q일때 만약에 x축의 양의좌표에서 x축(y=0)으로 두 지수함수가 점근한다면 최솟값은 분명히 양수어디에선가 나와야되니까 그것도 경우의수가 아닐까요??.. ㅜ.ㅜ.. 그게 11x11=121이 나와서요 ㅎㅎ...
아니면 두 지수함수가 한없이 y=0으로 감소하니까 그 최소가 되는 t의값이 양의무한대로 발산하기 때문에 경우에서 빼는건가요??..
음...... 한번 다시 생각해 봐야 겠습니다.
솔직히 이때 조건을 구간(-무한,무한)으로 잡았더라면 이러한 논란이 없었을 것 같네요. ^^ 죄송합니다. 그리고 단조증가 또는 단조 감소일 때, 최솟값을 가지는 점 t를 가정하면, 결과적으로 t는 발산해 버립니다. 그리고 또한 무한대는 값이 아니지요. 단지 한없이 커지는 상태를 나타냅니다.
따라서 최솟값이라고 보기는 어려울 것 같기도 합니다.