3차함수는 이런걸 알아야 고수!
안녕하세요.
상승효과 이승효입니다.
얼마전 이 문제에 대한 좋은 칼럼이 있어서, 저도 글을 써봅니다.
3차함수의 고수가 되고 싶다면 천천히 끝까지 읽어보시고
선좋아후감상도 감사합니다.
이 문제를 "잘" 풀기 위해
알아야 하는 내용은 아래와 같습니다.
(1은 모든 함수, 2-4는 삼차함수의 성질)
====
1. 구간 함수가 미분가능하면 접한다!
2. 축과 접점을 알면 식을 세울 수 있다!
3. 극점과 극점의 중점은 대칭점이다!
4. 일반형에서 대칭점의 x좌표를 구하자!
====
1. 구간 함수가 미분가능하면 접한다!
구간 함수는 그래프가 끊겨 있다고 생각하지 마세요.
삼차함수와 y=0, y=1 세 개의 그래프가 있다고 생각하고
미분가능하므로 삼차함수가 두 직선과 접한다고 생각하세요.
2. 축과 접점을 알면 식을 세울 수 있다!
삼차함수가 x=0에서 y=1에 접하므로
y=1과 만나는 다른 점의 x좌표를 알파라 하면
이 되겠군요! 따라서 c는 0으로 확정! (오!)
만약 삼차함수의 비율관계를 알고 있다면
x축과의 교점을 바로 찾아내서
y=0과의 접점과 교점을 기준으로
요로케 식을 세운다음에 (0, 1)을 대입해서
a를 구하고, 전개해서 b를 구할수도 있겠죠? (오!)
여기까지의 내용은 일단 무조건 필수!
대부분의 삼차함수는 이것만 알아도
훨씬 쉽게 풀 수 있으니 반드시 알아야 해요.
그렇지만 이 문제는 일반형으로 주어졌으므로
일반형에 대해서 알아봅시다!
3. 극점과 극점의 중점은 대칭점이다!
y=0, y=1에서 접하는 점을 알고 있으니
삼차함수의 극점을 알게 된거죠?
두 극점의 중점은 삼차함수의 대칭정입니다!
4. 일반형에서 대칭점의 x좌표를 구하자!
문제처럼 일반형으로 삼차함수의 식이 주어졌을때,
대칭점의 x좌표는 반드시 위와 같이 결정되요.
일반형 식을 미분한 다음에 완전제곱식으로 바꿔보세요.
미적분 선택자라면 두번 미분해도 되겠죠?
이 식은 외워두어야 해요.
그럼 3번에서 대칭점의 x좌표를 구했으니
이를 이용해서 a,b의 관계를 구하면 삼차함수는
이렇게 미정계수가 a 한개인 식으로 바뀌죠? (오!)
(1, 0)을 아직 이용안했으니 대입해서
a를 구하면 끝이네요!! (오오!)
어떤가요?
왜 주변의 수학고수들이
삼차함수 문제만 나왔다 하면
뚝딱뚝딱 쉽게 푸는지 알겠나요?
그런데 특정한 문제를 풀기 위한
테크닉으로만 외워버리고
다른 문제에 적용을 못시키면 안되죠.
사실 이 정도는 빙산의 일각.
여러분이 모르는 삼차함수의 세계는
아직도 분명히 많을거에요.
이러한 것들을 체계적으로 배워서
수학 고수가 되고 싶다면
여러분도 늦기 전에
상승효과에 올라타세요!
여러분이 기출 분석이 제대로 안되어 있거나
아직 실력이 부족하다면, 혹은 고3이라면
대치옯에서 레퍼런스!
기출을 볼만큼 봤는데도 아직도 실력이 부족하다는 생각이 들었는데
오늘 칼럼을 보고 충격을 받았거나 최상위권 목표라면
강남옯에서 실력지상주의!!
[3-4월 시간표]
<대치오르비>
일요일 2-5시 <레퍼런스-수학2> (3월 7일부터)
화요일 6-9시 <레퍼런스-기하> (3월 2일부터)
위 특강은 영상으로 별도수강 가능해요. 꼭 직접 듣고 차이를 느껴보세요.
예약 : https://forms.gle/mPnn1kZhEUpNbxZd8
<강남(서초)오르비>
토요일 6-10시 (3월 6일부터)
의대합격을 위한 <실력지상주의-수학1+2>
위 특강은 영상으로 별도 수강가능해요. 수학1+2와 병행해도 좋습니다.
실력지상주의는 최상위권을 목표로 하는 학생을 위한 수업입니다.
평가원 킬러와 수리논술 기출 등 최고난도 문제를 다룹니다.
예약 : https://academy.orbi.kr/intro/teacher/196/l
다들 힘내요~~
질문은 댓글로 환영입니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
부담스럽다하면 바꿔주시나요?? 좀 일찍가는데 걸리면 조질거같은데
-
ㅇㅂㄱ 2
-
2026 인서울 의과대학은 물변표인가요 불변표인가요? 2
변표에 대한 개념이 전혀 없는데, 25수능 정시전형까지는 서성한이 대표적으로...
-
시대 vs강하 1
목동 강하 장학 받으면서 시즌0하고있는데 시대붙었는데 시대가는게 나은가요? 강하에서...
-
ㅈㄱㄴ
-
시간아 빨리가줘
-
96 96 1 98 96인데 CC이면 설인문이나 가장 낮은곳 되는학과ㅠ있을까요?...
-
언매 인강 추천 1
언매 유베이스 기준 언매GOAT 강의가 뭐임?(시대,두각 포함) 언매올인원,...
-
얼?버기 2
글 리젠 속도 와이러노 암튼 기상 성공
-
드디어..!
-
참 슬퍼
-
기차지나간당 14
부지런행
-
믿습니다 티웨이 0
눈보라 때문에 비행기 안뜰까 걱정하고 있었는데 이걸 보내주네 ㅋㅋㅋㅋㅋㅋ
-
얼버기 3
응..
-
기차지나간당 4
부지런행
-
만약 과제로 수특 변형문항이 제공되었을때, 어느정도 난이도와 변형정도를 원하시나요?...
-
알바 문의 문자로 했는데 한달만에 답장이 왔네용 근데 제가 알바 꼭 해야 하긴...
-
얼버기 1
안녕하세요
-
도로에서 잠자는 것 같아요
-
겁나 mz한 발암캐가 생겨서 하차했어요 중독수준으로 보고 있었는데 이건 좋은건가..
-
가난이 군대같이 오리라
-
진로고민만 하다가 일단 공부 시작하니까 행복해요 근데 이제 시간이 잘 시간이ㅡ아니라...
-
대전 근교 살아서 대전에서 재수해야됨 기숙은 작년에 윈터썸머 갔다왔는데 정신병만...
-
방금닦은곳 다시 발자국생김ㅋㅋㅋㅋㅋㅋ ㅌㅋㅋㅋㅋㅋ
-
큐브에서 수시,정시 관련 상담 해주실 선생님 계실까요..?ㅠㅠ혼자 공부하는데...
-
자자 0
-
외롭기 때문에 공부해야하고 대학교 가면 다 좋아질까 동아리 활동이던 과 생활이던 다...
-
지방수 갈 수도 있을거 같아서 기숙사 드가기 전에 미리 사려는데 어떤게 좋을까용.?...
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
국숭세단 위로 건대 동국대 빼고 없는 거 맞나요??
-
김기현 아이디어 2
현역 이과 고3이고 수학 2-3 정도 뜨면 좋겠는데 내신이 확통이고 다른 것도...
-
보면 대단하다는 생각듬 나는 아침 일찍 일어나는것도 어렵던데...
-
진짜 자러감 3
-
아몰라사문시작!
-
조만간 이 생활도 그리워지겟지
-
왜 여기서..? 하는거임..?
-
공통+선택을 그냥 한 권으로 묶으면 보통 몇권정도 푸나요? N티켓 빅포텐 펀더멘탈...
-
우흐흐
-
자루갑니다
-
굿나잇
-
단톡 초대됐네 0
이제 뭔가 실감이 난다
-
나만 이럼? 1
이번에 미적 백분위98 받았는데 수능 끝나고 지금까지 수학문제 하나도 안보다가 어제...
-
새벽 노래 추천 6
최성 화이트데이 데모 창모 pure rage
-
자야겟다 1
서버 너무 느려
-
렉 못 버티겠다 7
오르비 안녕 다른 거 하러 감
-
새벽 노래 추천 4
근데 이제 나이트코어 버전에 영어 버전인 저는 이걸로 처음 접했어요
-
이과 예비고3입니다. 2학년 때 화생을 했었는데 수능선택과목으로는 생명/사문 생각...
-
존나 슬픔 0
-
뭔가 ㅈ댓는데 6
아직 짜는 중이긴한데 뭔가 오전이 저러면 안될 것 같은 느낌인데
-
새벽노래추천 3
호불호 엄청 갈리는
푸앙~~~
앗 경찰
굿굿~
선생님 지금 수2 레퍼런스 수강중입니다. 개념이 부족해서 레퍼런스 수강 중인데 4월까지 수2 레퍼런스 수강하고 나서 실력지상주의 수2 수업 수강해도 될까요?
실력지상주의 수업 난이도가 어느정도인지 잘 몰라서 여쭤봅니다.
네~ 그렇게 하면 될것 같네요. (헉 근데 아이민이!)
네 감사합니다.
수강중이면 자세한 학습계획 상담은 카톡으로 가능해요~
![](https://s3.orbi.kr/data/emoticons/oribi_animated/034.gif)
멋져요선생님 이정도 난이도면 수능수학 몇번 정도인가요? ㅜ영양가 업는 질문 죄송합니다. 풀어서 기분이 좋아서요 ㅜ
잘했네요 ㅎㅎ 쉬운 4점짜리 문제라고 봐야겠죠?