가형 100점이 기하 그림 그리는 법 [22 예시 기하]
2022학년도 예시문항 기하 문제지.pdf
2022학년도 예시문항 기하 MENTOR의 손풀이.pdf
안녕하세요. MENTOR 김예지입니다.
오늘은 2022학년도 예시문항 분석의 마지막으로 2022학년도 예시문항 [기하] 분석을 들고 왔습니다!
첨부파일에 2022학년도 예시문항 기하 주요 문항 문제지와 손해설이 있으니 꼭 확인해주세요 :)
이제 바로 [기하] 28, 29, 30번을 살펴보도록 하겠습니다!
2022학년도 예시문항 기하 28번) 평면벡터의 내적
28번은 주어진 내적값을 만족하는 두 점 P와 Q의 위치를 파악하는 문제입니다.
정답을 맞힌 분들은 선분 OP의 수직이등분선이 반지름이 4인 반원과 접할 때 주어진 Q의 개수를 만족한다는 사실을 알아냈을 것입니다.
자신이 정확하게 내적값과 점 Q의 개수의 의미를 파악하여 두 점 P와 Q의 위치를 결정했는지, 그냥 몇 번 그림을 그려보다 정답을 발견했는지 꼭 확인해보셔야 합니다!
만약 정확하게 문제 상황을 파악했다면 다음과 같은 결론을 낼 수 있어야 합니다.
위 그림을 보고 자신이 정확한 관계를 파악했는지 한 번 더 확인해보도록 합시다!
두 점 P와 Q의 관계를 해석하는 방법은 손해설에 적어뒀으니 확인해주세요.
2022학년도 예시문항 기하 29번) 포물선의 정의
포물선 문제가 나왔다면, 포물선의 정의에 따라 포물선 위의 한 점에서 준선까지의 거리와 초점까지의 거리가 같다는 사실을 활용해야겠죠?
29번을 마주했을 때 직선 PQ와 정삼각형 PQR가 눈에 띄어도 풀이 과정에서 두 선분 PF와 PH의 길이가 서로 같다는 것을 활용해야 한다는 생각은 꼭 가지고 있으셔야 합니다!
(단, 점 H는 점 P에서 준선에 내린 수선의 발)
예시문항 기하 27번과 29번 모두 주어진 조건을 도형에 최대한 표시하면 풀이의 방향을 어렵지 않게 파악할 수 있는 이차곡선 문제였습니다. 주어진 조건을 문제에 표시하는 습관을 들이도록 합시다!
2022학년도 예시문항 기하 30번) 정사영
이번 예시문항 기하 30번은 문항 번호에 비해 난이도가 쉽다는 평을 많이 받은 문제입니다.
실제로도 문제 상황을 정확히 파악하고 대략적인 그림을 그린 분들은 크게 어렵지 않게 문제를 해결할 수 있었을 것입니다.
반대로 30번이라는 위치와 문제의 겉모습에 부담을 느껴 도형을 그리지 않았다면 아쉽게 이 문제를 놓쳤을 수 있습니다.
이 문제를 놓친 분들과 정답을 맞힌 분들 모두 풀이의 근거를 정확히 확인해보셔야 합니다.
선분 PH가 xy평면과 평행할 때 왜 이면각의 크기가 최소가 되는지, 왜 이면각의 크기가 ∠CAC'과 같은지 정확하게 설명할 수 있는지 확인해봅시다!
아래의 풀이는 각각 [선분 PH가 xy평면과 평행할 때 평면 CPA와 xy평면이 이루는 각이 최소가 되는 이유]와 [∠CAC'과 이면각의 크기가 같은 이유]에 대한 설명입니다.
손해설을 통해 더 자세한 내용을 확인하실 수 있습니다!
직관적인 해석으로 풀이의 방향을 정할 수 있는 능력도 기하를 풀 때 큰 도움이 되지만 직관적인 판단을 수학적인 근거로 설명하는 연습이 더 복잡한 문제를 해결할 수 있는 힘을 키워줄 것입니다.
02월 08일 월요일, 드디어 [주예지T X MENTOR] 주멘 모의고사 1회가 공개됩니다!
주멘 모의고사를 통해 그동안의 학습을 점검하고, 남은 기간 동안 자신이 나아가야 할 방향을 설정하시기 바랍니다. 감사합니다 :)
- 지난 게시글 바로가기 -
주멘 모의고사 일정 바로가기
2021학년도 수능 수학Ⅰ 칼럼 바로가기
2021학년도 수능 수학Ⅱ 칼럼 바로가기
2021학년도 수능 확률과 통계 칼럼 바로가기
2021학년도 수능 미적분 칼럼 바로가기
기하에 대하여 바로가기
2022학년도 예시문항 수학Ⅰ 칼럼 바로가기
2022학년도 예시문항 수학Ⅱ 칼럼 바로가기
2022학년도 예시문항 확률과 통계 칼럼 바로가기
2022학년도 예시문항 미적분 칼럼 바로가기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
메가고 시대고 왜 일을 안하나 했네 이제 월요일이 된 거구나
-
열등감때매 강의 못 보겟음
-
나는 반모를 안다 ox 21
ㅇㅇ
-
작가 사람아니야 ㅠ
-
아무거나 ㄱㄱ 생각이 안나 영감받게
-
1. 가정 불화 2. 못생김 3. 약속 잡을 용기 없어서 성인 되는 새해에 혼자...
-
뭐지다노
-
이쁜 짤 좀여 9
3D
-
ㅈㄱㄴ
-
반수학과다.
-
씹어먹어도 되나요? 이미 먹고 물어보는거긴 함
-
돈 들어 (사실 동물을 별로 안 좋아하는 거긴 함)
-
2시네 0
이제 일어나야겟네..
-
너무 많으면 중간에 끄늠 ㄱ
-
껄껄껄
-
https://link.yeolpumta.com/P3R5cGU9Z3JvdXBJbnZp...
-
Odoriko
-
ㅇㅈ메타 참전 0
근데 이제 고양이 ㅇㅈ
-
상향? 1칸 1
오르비에서는 1칸 스나라고 하던데 질문드려요 1. 가 ,나 ,다군에서 유불리가...
-
으아
-
대학라인이어케됨 13
스카이 서성한 중경외시 국숭세단 광명상가 인가경?? 여기부터 모름
-
그래서 커뮤용어 모른척 할 예정임뇨…
-
진학사보단 고속이 나음
-
현재 진학사 4칸. 등수는 571. 성적은 656.13인데추합 가능할까요?
-
썡 노베에서 재수했습니다 이 성적이라면 어느정도 대학을 지원하는게 좋을까요 과에...
-
조이 보이다
-
내가 쓰려는대학은 완전 안정+ 개씹상향2개 넣은 사람 개많은데 이런 사람은 찐으로...
-
서강 경영인데 추합으로 가능할까요?
-
최소 아무리 못해도 몇칸이상이어야 붙나요?? 추합 김젬마 입결표
-
진학사 표본분석당해서 내 성적이 다 까발려짐.. 모두에게보여버져렸다
-
수2, 미적은 26 뉴런샀는데 수1 혼자만 25 뉴런이라 미치겠음 특히 표지 색이...
-
고대가가고싶소 0
정말이오
-
삼각형 PQR의 넓이와, 평면 PQR과 평면 α의 이루는 각을θ(단,...
-
거북이 키우고 싶어 육지거북도 키우고 싶어 해파리도 키우고 싶어 참치 키우고 싶어...
-
혹시 연세? 11
아 고려인가..
-
뭔가 동생은 그만큼 나 안 좋아하는듯... 동생이랑 나랑 평생 사이 좋았으면 좋겠다. 새벽감성.
-
먼저잘게요 2
다들 따수운 밤 되세욘
-
유감스럽지만 4
벌써 많은 이들이 나의 매력에 빠진 거 같군.
-
틀? 5
형들 너무 무서워 ㅠ
-
운동한다
-
사회에서는 그냥 지나가는 어린놈1임
-
수험생 커뮨데 ㅇㅇ
-
나이만 보면 틀딱이 아니야
-
언매 미적 영어 물1 생1 현역: 35144 (총합 17) 85 59 1 58 75...
-
그 사람의 나이 혹은 경험치를 판단하는 기준이 되는 듯
-
전 몇살같나요 흐흐
모의고사 기머하겠습니다!