확률질문 ( 초고난이도 )
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
둘 다 붙는다면 어디가는게 좋을까요
-
성적 올려줄게~~
-
주변에서 2명 (고3, 재수)제의 들어와서 고민 중에 있습니다. 과목은 국어입니다....
-
경영>=경제>>>>어문>=인문>=사과 개인적으로 느낀것
-
근데 인스타 알고리즘에 미적분학 뜨는 거는 어케 받아들여야 함? 0
수능 말고 테일러 급수나오고 tan (sqrt x),이런거 나옴 ;;;;
-
좀 적당히
-
언매 미적 과탐히는중인데 한의대만 노린다면 사탐이 더 나을까요?
-
ㅈㄴ 호감상임 ㅇㅇ
-
물론 제가 수시러라서 그렇게 느끼는 거일 수도 있지만요 큰 꿈과 로망 생각과 목표를...
-
당신이요
-
1-4가 서카연고 인가요?
-
지금 요가만 하고 있는데 집에서 놀고 먹고있으니 살이 빠지질 않네요 헬스도...
-
질문 받음 3
-
안녕 5
ㅎ
-
1.경희대 정보디스플레이(서울) 2.경희대 유전생명공학(수원) 3.한양대 교육공학...
-
치타는.. 웃고있다
-
평가원이 수능 인문으로 서양철학을 낼 것 같았는데 또 동양을 가나에 꽂더라 물론...
-
짤 ㄹㅇ 5
잘만들엇네..동네얼짱
-
어떻게든 가고 싶어요 가끔씩은 불평하고 싶어요 신은 왜 나에게 이정도의 저능을...
-
국어랑 탐구가 많이 급해요. 탐구는 아예 개념도 안 해봄. 국어는 4등급임...일단...
-
이 사진 ㄹㅇ 잘 나옴
-
저도 재수했어서 많이 응원했어요 >~< 기억하실지 모르겠지만 수능 끝나고 인스타...
-
무휴학 4수 성공 가능성 어떨거같음 ? 스카이 목표임 5
삼반이라 7 8 10 덮 성적표고 6평 11311 9평 41212 수능 41212임...
-
중앙 vs 이대 11
중대 낮과 (문과) 이대 높과 (문과) ㅇㄷ가는게맞음…. 로스쿨생각중 어딜가든...
-
그러나 이쯤에서 만족하려고 함
-
진짜로.....
-
넵
-
이제 대입을 향해서.. 다시 시작인 건가 형은 마지막 평가원 시험에서 빅엿을 먹고...
-
뭐 경영 자전 등등 싹 남는성적이긴했지만 학점을 잘채우더라도 내가 리트를...
-
정치이야기)오르비에서 내가 가장 자유주의에 가까울걸? 12
혹자처럼 정치적 레토릭으로 자유의 이름을 더럽히지 않았으면
-
뉴런 언제부터? 2
현역이고 작수 학원에서 풀엇을 때 81이었어요(미4) 고2모는 다1 근데...
-
그래야 미련이 없을 것 같아…
-
이거 붙나요? 2
중대 ict임
-
봇치더락이라는 애니를 많이 좋아한답니다..(처음부터 애니 얘기냐구..! 퍽)...
-
강기분 강기본 큰 차이가 있나요? 별로 큰 차이는 없다고 하던데
-
진지하게 성인 ADHD 의심해 봐야 하나요? 제가 외향인인 것을 감안해도 오랫동안...
-
05 이하는 다 아가임 27
04는 이제 찌들었고 03 이상은 관 닫았음
-
물1보다 생1하는게 낫나요? 수능때 물리 이꼬라지나서 선택과목 바꿀까 고민중인데 모르겠네요
-
연대기원8일차 3
-
얼마나 빨리 최초합 결과 냈으면 성대 공학계열 쓴 내친구가 합격결과 나온지도 모르네 ㅋㅋㅋ
-
저도 이제 늙은 걸까요 ㅋㅋㅠㅠ 토닥토닥해주고 싶고 응원해주고 싶고 뭔가 아가같고 그런데
-
하재호가 01인데 그럼 이번엔 02일까 03일까
-
점공 이거 뭐냐 1
-
저는이쁘다생각해요
-
1D2K 4회 25수능 15번 문제를 다룹니다 구조가 흔해서(당해 6모 15번에도...
-
잘난게없는삶이란게그런거같아요 어디를둘러봐도모두에게서나보다...
-
성적 인증 https://orbi.kr/00070673396/ 안녕하세요. 성적...
이거 그 피자먹는문제랑 유사유형같은데
문제가 없네여...
아 새로고침 하니까 뜨네요 큐ㅠ
4/7 아닌가요?
11아닌가여 2명잡아주고 어거지로 품 ㅠㅠ
답이뭔가요?ㅋ
이거 그 당첨자 한명이 뽑는순서대로 분류하면 되요
첫번째로 뽑을경우, 2번째로,... 이하생략 이런식으로 풀면 답나오는데
계산이 그지같아서 안풀래요 ㅋㅋ
전 답이 다르게 나오네요 윗분들과 ㅠ
이거 여상진인데 미친문제임 수능에 절대안나오니까 풀지마셈 ㅋㅋ확률의 개념 제대로 모르면 절대 못품
답이 뭐에요?
답이 뭔가요?ㅋ
이거 고1 때 선행하면서 본 기억 나는데... 예전에 나온 문제 아닌가요?
정답 11 아닌가요?>?
당첨자 없는경우: 24/63
당첨자 1명인 경우: 36/63 = 4/7
당첨자 2명인 경우: 3 /63
이게 왜 미친문제죠 풀이도 깔끔하게나오는데
11임 XX / XO / XO / OO / OO 라고 두고, 1번부터 차례로 뽑을 확률 쭉 곱하고
XO부분은 OX될 수 있으니까 4 곱해준다음
XX / OO / XO / XO / OO 이렇게 순서 섞일 수 있으니까
5*4C2 더 곱하세요
4/7 입니다ㅋㅋ
제풀이좀 봐주세요;;
빨간 공을 배분하는 경우의 수는,
1. 두 사람이 각각 2개를 배분 받는 경우(당첨자 총 2명)
2. 한사람이 2개, 나머지는 두 사람이 각각 1개씩 배분 받는 경우(당첨자 총 1명)
3. 네사람이 각각 1개씩 배분 받는 경우(당첨자 총 0명)
이렇게 케이스를 나누어 각각 계산해보면,
1. 5명 중에 당첨자 2사람을 뽑는 경우의 수 5C2 = 10
2. 5명 중에 당첨자 1명을 선택하고 나머지 4명 중 빨간공 1개를 받는 2명을 고르는 경우의 수 5C1 x 4C2 = 30
3. 5명 중에 빨간공을 1개씩 받는 4명을 고르는 경우의수 5C4 = 5
따라서 당첨자가 1명일 확률은 30/10+30+5 = 30/45 = 2/3이므로 a+b = 5
----------------------------------------------------------------------------------------------------------------------
제가 계산한 전체 경우의 수 10C4를 논리적으로 접근하면 다음과 같습니다.
(제가 이렇게 접근했다는 것이 아니라 참을 검증하는 과정이라고 보시면 되겠습니다.)
우리는 공 10개를 일렬로 5묶음으로 배열한 전체 경우의 수를 먼저 상상합니다.
(1,2) (3,4) (5,6) (7,8) (9,10)
이 때, 전체 경우의 수는 {10C2X8C2X6C2X4C2X2C2}X2^5=113400X32 라고 볼수 있죠.
쉽게 생각하자면 5사람이 각각 10개의 자리 중 2개로 된 한 묶음을 선택한 후 각각
자기가 뽑은 공을 놓을 때 좌우를 바꾸는 2가지를 고려한 것이라고 보시면 됩니다.
이렇게 해서 배열된 (1,2) (3,4) (5,6) (7,8) (9,10) 의 임의의 배열 중에서
흰공 6개가 서로 자리를 바꾼 6!을 하나로 보고, 빨간공 4개가 서로 자리를 바꾼 4!를 하나로
보면 113400X32 나누기 4!X6! 이 되죠. 이 답이 바로 10C4 즉 210입니다.
이것은 결국 쉽게 보자면 원래 주어진 10개의 자리 중 빨간 공이 놓을 자리 4군데가 바뀌는
경우의 수를 각각 다른 것으로 보는 것입니다. (이 경우 분모의 210가지 각각의 경우는 애초에
생기는 모든 임의의 배열인 113400X32 가지 중 각각 4!X6! 가지의 경우를 하나로 생각하여 축약된 것이므로 같은 빈도를 가지는 것은 자명합니다.)
----------------------------------------------------------------------------------------------------------------------
그리고 애초에 제가 처음 보낸 답변 중 오답에 분모를 45가지로 계산한 경우가 있다고 했는데
이 사고는 다음과 같습니다.
당첨이 없는 경우 : 4명이 빨간공 1개씩 받는 경우 5C4=5
당첨이 1명 있는 경우 : 1명이 2개, 2명이 1개씩..5*4C2=30
당첨이 2명 있는 경우 : 2명이 2개씩 5C2=10
..30/45=2/3...
이 때 분모를 5+30+10=45로 계산하면 오답이 되는 이유는 저 45가지 모두 동등한 빈도로 고려되지 않기 때문입니다. 이렇게 되는 가장 큰 이유는 흰공과 빨간공의 개수가 다르기 때문입니다. 만약 흰공도 5개 빨간공도 5개라면 위의 풀이가 맞을 겁니다...
실제 예를 들어보자면 A,B,C,D 4명이 각각 빨간공 1개, 흰공 1개를 가지고 E가 흰공만 2개 가지게 되는 경우는 당첨이 없는 5가지 중 1가지이기 때문에 1/45가 되어야 하겠지만 실제 경우의 수를 계산해보면 전체 경우의 수는 113400 중에서
(6C1X4C1)X(5C1X3C1)X(4C1X2C1)X(3C1X1C1)X2C2=8640 가지이기 때문에 1/45가
나오지 않습니다.
(A가 흰1빨1)X(B가 흰1빨1)X(C가 흰1빨1)X(D가 흰1빨1)X(E가 흰2) 이라고 보시면됩니다.
----------------------------------------------------------------------------------------------------------------------
개인적으로 쪽지로 질문받은 김에 여기도 풀이를 올립니다.
일단 답은 4/7이 맞습니다.
일단 경우의 수로 분모 및 분자를 사고합시다.
현재 주어진 공 10개를 2개씩 5묶음으로 나누게 되므로,
(1,2) / (3,4) / (5,6) / (7,8) / (9,10)
이렇게 생각했을 때, 분모의 경우의 수는 빨간공 4개를 임의의 4곳에
넣는 방법입니다. 따라서 10C4=210 으로 둡니다.
이 때, 우리가 원하는 사건은 빨간 공 2개를 다섯 개 중 한 묶음에 넣고
나머지 2개를 남은 네 묶음 중 두 곳에 이웃하지 않게 넣으면 됩니다.
계산해보면 5C1×(8C2 - 4)=120 이 됩니다.
(5묶음 중 빨간 공 2개를 넣는 한 묶음을 선택하는 방법)×(남은 8 곳중 임의로 두곳에 넣는 방법 - 어느 한 묶음에 두개가 동시에 들어가는 경우) 입니다.
따라서 120/210=4/7이 되어 답이 4+7=11이 됩니다.
답글에 보니 2/3으로 계산한 분이 있던데, 이는 수학적 확률에서 모든 근원사건이 같은 정도로
기대되어야 한다는 정의에 어긋나는 상태로 계산한 결과이므로 오답입니다.
(즉, 전체 경우의 45가지가 모두 같은 확률을 가지지 않는 다는 뜻입니다.)
잘 이해가 안간다면 먼저 수학적 확률의 정의를 다시 찾아서 공부해보시고, 이해가 안가는
부분을 질문해주세요 ^^ (아 그리고 정확히 얘기한다면 최근 수능 시험의 기조상 확률문제가
그리 어렵지 않기 때문에 나올 가능성이 낮다는 것이지, 교과과정 외의 문제는 아니므로 수능에
나올 수 있는 문제입니다.)
심각한 오류가 있네요. 님말대로 빨간공 4개를 10개의 셀에 집어넣는 것이라 생각하면, 1,3,5,7과 2,4,6,8을 다르게 보는 것인데 이게 말이 됩니까?
맞는것가텐요 죄송함니다