다시 한번 나형 15번 문제 올립니다 ㅠㅠ 고수님들 꼭 봐주세여
그냥 접선의 방정식 공식으로 풀려고했는데요
저처럼 풀면 왜 답이 안나오죠??
일단은 문제 보고
문제 이해하려고 밑에 그림 처럼
대충 이런꼴이겟구나...하고 그래프 딱 그렷구요
그 다음 밑에 처럼 접선의 방정식 공식썻어요..
그래프에서 보이시는것처럼 접점이 (a,0)이니까
따로 미지수 (t,f(t) ) 로 놓을 필요 업이 바로 공식 대입하면 된다 생각햇구요..
답이 왜 안나오죠??
혹시 점(a,0)이 접선의 방정식 위에 있다는 명확한 보장이 없어서 그런가요?
그림으로 대충그려보니 뭐 대충 접점 되길래 접선위에잇겟지.........라고생각햇는데...
풀이 보니깐 다들 접접을 미지수로 잡으셔서 풀던데...
그림 딱 보고 왠지 이거 접점이 접선의 방정식 위에 접한다는 느낌이 들어서...
t로 안놓앗스빈다 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문받아요 13
선넘질받도받아요
-
한참 멀었군
-
그냥 부모한테 돈 달라고하면 되는거 아닌가
-
사실 따뜻한 사람인 거 아님뇨? 자기만 보기 아까워서 남까지 보여주고 싶어하는 따뜻한 사람인거임뇨?
-
아니 그럼 지금 최초합 개 씹안정에서 불합권까지 갈 수도 있음? 7
재수하기싫은데
-
47나왔는데 그냥 문해력으로푸는 어이없는 문제 1개틀ㄹ림 필수입니다..
-
성균관대 특 4
송중기 차은우 공부 좀 치는 S급 알파메일들 전용 대학
-
아악 나가기싫어
-
169cm의 4
미모의 킴민지 양
-
빨간약 한사발 거하게 마시고 일상으로 돌아가게
-
지1 47 1
98은 뜨려나... 등급컷 여론이 자꾸 오르네
-
진짜 간당간당한거같은데 불가능이겠죠?
-
모두 조용.
-
허경영
-
누가 밀었냐 3
하
-
인간의 본능을 자극하는건 외부의 아름다움일뿐..
-
쌍사 선택 2
올해 수능 생윤 사문 선택했습니다. 늘 1등급이던 생윤에서 미끄러지고 1년동안...
-
남자들 누가 더 좋나요
-
밖에서 읽기 눈치보여요
-
하는법률만들어야된다고생각해요
-
교대 가면 진짜 쉽게 함 상상이상으로 예쁜여자만남
-
키특 1
169랑 170이랑 179랑 180이랑 진짜 차이 하나도 없는게 맞는데 숫자때매 차이 심해보임
-
원점수 80인데 갈리냐 안갈리냐 그냥 운빨일듯 진짜 안갈리면 좋겠다
-
나군에 성대 말고 쓸 곳이 없음 텔그에서 서울대식 392라 쓸 곳도 없고..
-
공통 2개 맞추고 미적 27번부터 틀릴꺼면 그냥 통통이로 돌려???
-
외국 책중에서 인간실격 멋진 신세계 파리대왕 데미안 1984 변신 이방인 동물농장...
-
진짜 과 아무거나 상관없고 물변뜬다쳐도 죽어도 못가? 스나도 못할만한 성적임?
-
키ㅇㅈ못하는이유 2
개작아서 부끄러움
-
흠
-
키ㅇㅈ 10
평균키가 부럽다
-
키가 크게 큼 3
원래 '키'가 '크기'랑 '키(height)' 모두 뜻했음요
-
대기하면 컨설팅 받을수 있는 확률이 어느정도인가요? 제주도에서 비행기타고 설명회도...
-
ㄱㄱ
-
"수능 잘보는것보다 잘생긴 것이 낫다" <=실제로 단과 종강때 얘기함
-
이건 디지털로 찍었어요..
-
ㅈㄱㄴ
-
모든 것을 평등하게.
-
노래방 가야지 5
-
목동 시대 송준혁 선생님 미적 어떤가요? 난이도랑 스타일 정도만 알려주시면 감사하겠습니다
-
존잘에 고능아면 13
너무 사기캐 아닌가 역시 무신론이 옳았네요... 이게 뭐가 공평해
-
재종에서 로맨스 찍겠누
-
솔직하게
-
평범한가요?
-
오르비언들은 누가 더 좋아요? 전 후자가 더 멋진듯..
-
저도 글 제목 까리하게 색깔 입히고 싶은데
-
올해 무조건 성불각임 ㅋㅋㅋㅋㅋ...
-
사탐런은 지능순 -> 고지능 사탐런 -> 과탐 고지능 블랭크, 서울대 고대 이공계...
-
부엉 1
우
혹시 점(a,0)이 접선의 방정식 위에 있다는 명확한 보장이 없어서 그런가요?
정답입니다
접점이 (a,0)이라는 뜻이 아니죠
문제를 잘못해석하셨을뿐만 아니라
밑에분이 말씀하신대로 밖의점이 주어지면 미지수놓는게 기본이죠
제가문제를 잘못해석했단말이
어떤쪽으로 잘못해석햇다는거죠 ?
미지수놓는거는
접점 밖의 점이면 미지수놓는건 알고잇엇는데
그림 그려봤을떄는 접점 자체가 y축이 0이 되버려서
미지수를 놓지 말아야생각햇어요 ㅠㅠ
일단 미지수 놓을 생각을 전혀못했던 님은 가장 기본적인걸 모르신다고 보면 됩니다.
정석 기본문제만 보더라도
외부의점에서 접선긋는문제나오면 바로 미지수잡고들어갑니다.
(a.0)이 곡선 위의 점이라는 말이 문제 어디에도 없는데 마음대로 푸셨네요 ;;
제가 질문을 제대로 이해한건지는 모르겠는데...
(a,0)이 접선의 방정식(그러니까 (0,-4)에서 곡선 y=x^3 - 2에 그은 접선의 방정식)위에 있는건 문제에서 이미 제시해놓고 있어요
근데 님께서 그린 그림 보면... 마치 접점이 (a,0)으로 해놓으 신것? 같네요..
(a,0)과 곡선의 그래프 위에 있는 접점은 다른 점으로 두고 시작해야합니다.
(a,0)과 접점이 같다는 보장이 없기때문이죠.
그러므로 접점을 미지수로 예를들어 (t , t^3 - 2)으로 두고 시작하는 겁니다.
그래서 점(0,-4)에서 점(t , t^3 - 2)까지의 변화율과 (t , t^3 - 2)에서의 순간변화율이 같다고 두고 풀면 t=1이 나오므로
접선의 방정식은 y=3x-4라는 것을 알수 있습니다.따라서 a=4/3
일단 (0,-4)라는점이 주어진함수의점인지를 판단하고 그밖의점이면 접점을하나미지수로잡아야죠
그다음에 미지수점을이용해서 공식써서 y=f'(t)(x-t)+f(t)식만들고 x=0,y=-4 대입시키면 t에관한것이나오죠..
그다음엔 저식에다가 y=0집어넣었을때의 x값을구하시면되죠..
혹시 그러면 앞으로 접선의 방정식 문제 풀떄
접점이 접선 밖에 있는 경우에는
왠지 이문제 처럼 느낌상 접점이 (a,0) 일거 처럼 보여서
접선의 방정식 공식에서 무작정 집어넣으면 안되고
접점을 무조건 t,f(t)로 놓아야 하나요??
확실하지 않으면 승부를 걸지 마셔야죠..
직관 쩌시네요...
(t,f(t))로 놓고 풀어도 직관으로 푸는거랑 시간차이별반 안날거같은데.. 직관이라 함은 시간단축을 위한스킬이아닌가요?